fbpx

Kategoria: Projektowanie

Ekologia a produkcja falowników – Fronius GEN24

Ekologia a produkcja falowników – Fronius GEN24

Dziś nie liczy się już wyłącznie cel. Ważna jest także droga, która do niego prowadzi. Obok samego produktu istotny jest zatem sposób, w jaki ten produkt otrzymujemy. To skąd pochodzą materiały, w jaki sposób są transportowane i jak finalnie wygląda proces produkcji, decyduje czy dany przedmiot jest przyjazny dla środowiska czy jest jego wrogiem. Fronius zrównoważony rozwój stawia na pierwszym miejscu. Najlepszym tego dowodem jest falownik Fronius GEN24 oraz nadany mu certyfikat.

Fronius a zrównoważony rozwój

Kolejny chwyt marketingowy? Nic z tych rzeczy. Zrównoważony rozwój jest dziś na ustach całego świata. Dla nas to kluczowa idea, która zakłada dalszy rozwój naszego społeczeństwa, ale za pomocą takich rozwiązań, które nie odbiorą podobnej szansy przyszłemu pokoleniu. Mówiąc w skrócie: przemysł dąży do takich metod pracy, aby środowisko naturalne więcej nie cierpiało.

Dobro planety leży nam wszystkim na sercu, ponieważ wszyscy ją zamieszkujemy. Karę za jej niszczenie ponosimy, odczuwamy także wszyscy. Wszyscy też ponosimy koszty nieodpowiedzialnych działań. Kolejne tony wyemitowanego dwutlenku węgla to siermiężne kary ze strony Unii Europejskiej. Kary te są wliczone w ceny energii elektrycznej oraz urządzeń, z których na co dzień korzystamy.  Co więcej, w nie tak dalekiej przyszłości do przetargów będą dopuszczani producenci, których urządzenia fotowoltaiczne mają najniższy ślad węglowy.

Podobno chcąc zmieniać świat warto zaczynać od siebie. Dlatego też Fronius poświęcił rok na dokładną analizę i ocenę cyklu życia swojego falownika GEN (LCA – Life Cycle Assessment).

cykl życia produktu Fronius (LCA)
Schemat: Cykl Życia Produktu

Na pierwiastki rozłożono zatem nie tylko same surowce wykorzystywane w procesie produkcji, ale również ich pochodzenie, odległość, jaką muszą pokonać, aby dotrzeć do fabryki w Austrii, ich żywotność, możliwość recyklingu oraz drogę, jaką produkt musi odbyć, aby dotrzeć do klienta. Kolejnymi etapami były procesy utylizacji oraz recyklingu użytych materiałów.

Emisja CO2 – takiego algorytmu jeszcze nie było

Fronius jest pierwszą firmą na świecie, która podjęła się tego typu wyzwania – wyliczenia ilości dwutlenku węgla emitowanej w całym „cyklu życia” jednego falownika

– zdradził na konferencji Maciej Piliński, Dyrektor Sprzedaży Fronius Polska.
Maciej Piliński - dyrektor SE Fronius Polska

W tym celu firma opracowała specjalny algorytm, który pomógł dokonać precyzyjnych obliczeń. Uzyskane dane miały być przede wszystkim rzetelne. Obok CO2, za którego produkcję odpowiada fabryka Fronius w Austrii, pod lupę zostały zatem wzięte również pozostałe procesy od zakupu materiałów poczynając a na transporcie do klienta kończąc. Co więcej, pod uwagę był brany proces recyklingu, jaki producent zakłada po 20 latach pracy falownika.

Wynik? Od momentu zakupu komponentów aż do chwili zakończenia recyklingu jednego falownika Symo GEN24 Plus 5:0 (czyli przez ponad 20 lat jego działania) zostaje wyemitowane ok. 415 kg CO2.

Skąd taka ilość dwutlenku węgla? Otóż za niemal 2/3 tego wyniku odpowiada produkcja poszczególnych komponentów urządzenia. Mowa m.in o kontrolerach, mikroprocesorach, układach scalonych. Ich produkcja odbywa się z wykorzystaniem bardzo dużej ilości energii, a co za tym idzie, towarzyszy temu spora ilość wytworzonego dwutlenku węgla. Ponieważ trudno ten problem przeskoczyć, na wszystkich pozostałych etapach należy mocno zaciskać pasa, aby utrzymać emisję dwutlenku węgla w ryzach. Jak tego dokonać?

Gdzie kryje się diabeł emitujący CO2?

To zaciskanie pasa w przypadku falowników Fronius zaczyna się już na etapie zakupu komponentów do produkcji. Firma Fronius nie tylko je nabywa od lokalnych (czyli położonych w miarę blisko) dostawców. Mniejsza odległość to krótszy transport. Efekt? Transport odpowiada za emitowanie jedynie fragmentu, bo 11 kg (2,5%) całej, wspomnianej masy dwutlenku węgla.

Spore oszczędności pod tym względem Fronius poczynił także na etapie produkcji. Stare porzekadło mówi, że „szewc bez butów chodzi”, ale nie w tym przypadku. Fabryka w Austrii posiada bowiem instalację fotowoltaiczną o mocy 2 megawatów. Jak nietrudno się domyślić to właśnie źródło energii elektrycznej zasilającej pracę maszyn w fabryce. Sam proces produkcji jednego falownika Fronius GEN24 to zatem 9 kg (niecałe 2%) wyemitowanego CO2.

Pozostaje jeszcze transport urządzeń do klienta. Na tym etapie kurek z dwutlenkiem węgla również został dość mocno przykręcony. Fronius korzysta bowiem wyłącznie z transportu lądowego, który pozostawia o wiele mniejszy ślad węglowy niż np. samolot. A mowa konkretnie o 2 kg dwutlenku węgla (niecałe 0,5%) całkowitej, wspomnianej ilości. Należy również pamiętać o stratach. To nic innego jak wytwarzane przez urządzenia ciepło, które w żaden sposób nie stanowi czystej energii. Te straty to aż 35% masy emitowanego dwutlenku węgla, a więc sporo.

LCA GEN24 wyniki
Podsumowanie wyników

Od 1600 do 2000 ton dwutlenku węgla

Każdy wyprodukowany falownik stanowi kredyt zaciągany względem środowiska, który następnie trzeba spłacić

– jak słusznie zauważył Maciej Piliński.

Czy falownik Fronius GEN24 jest zatem w stanie „odpracować” te 425 kilogramów dwutlenku węgla, które są emitowane do atmosfery w trakcie jego życia? Ilość ta wydaje się być spora. Podkreślamy słowo „wydaje się”, ponieważ w finalnym rozrachunku jej „gabaryt” już nie jest tak przerażający, biorąc pod uwagę fakt, że falownik Fronius jest w stanie spłacić ten kredyt z naprawdę solidną nawiązką. Jego praca pomaga bowiem zapobiegać emitowaniu od 1 600 do 2 000 ton dwutlenku węgla. Mowa zatem o aż czterokrotnie większym zwrocie. Falownik Fronius nadpłaca zatem swoje zobowiązania z solidną nadwyżką. I to w przeciągu 3,5 roku.

… bo zawsze może być lepiej

Firma Fronius nie spoczywa jednak na laurach. Mimo, że praca falownika pozwala poczynić tak imponujące oszczędności w zanieczyszczaniu powietrza, producent nadal szuka punktów, w których można ten wynik jeszcze poprawić. Największa ilość CO2 emitowana jest przy produkcji aluminiowego radiatora, materiał wykorzystywany do jego produkcji pozyskiwany jest z recyklingowanych puszek. Producent przykłada również wagę do budowy falownika: skonstruowana jest ona w taki sposób, że po zużyciu można ją bardzo łatwo rozmontować, co ma ułatwić segregację poszczególnych materiałów w trakcie recyklingu. Warto wspomnieć, że ten konkretny model obudowy nadaje się do recyklingu w ponad 90%.

Mało tego: falowniki Fronius jako jedne z nielicznych na rynku można naprawiać bezpośrednio u klienta. Do zalet takiego rozwiązania nie trzeba zresztą nikogo przekonywać: eksploatacja takiego falownika, w jego 20-stoletnim cyklu życia, jest tańsza i zdecydowanie bardziej ekologiczna. Nie wymieniamy bowiem całego urządzenia a jedynie jego jeden, wadliwy element. To wszystko sprawia, że falownik Fronius GE24 jest jednym z najefektywniejszych na świecie pod względem spełniania warunków zrównoważonego rozwoju. Co zresztą docenił renomowany Instytut Fraunhofera nadając mu odpowiedni certyfikat. Bo też każdy może zacząć zmieniać świat na lepsze miejsce. Wystarczy postawić ten pierwszy krok.

Więcej szczegółów na temat oceny cyklu życia produktu:

Ocena cyklu życia produktów Fronius – szczegóły

Chcesz być na bieżąco z nowościami firmy Fronius? Zapisz się do biuletynu:

biuletyn fronius dla inwestorów PV
Kliknij powyżej i zapisz się do biuletynu Fronius dla właścicieli domów
Biuletyn Fronius dla instalatorów
Kliknij powyżej i zapisz się do biuletynu Fronius dla instalatorów
Wytyczne SBF – jak czytać?

Wytyczne SBF – jak czytać?

Pod koniec października Stowarzyszenie Branży Fotowoltaicznej (SBF) polska PV opublikowało wytyczne dotyczące projektowania i wykonania instalacji PV w kontekście ich bezpieczeństwa przeciwpożarowego.

Ponieważ dokument zawiera wiele cennych informacji, postaramy się zwrócić uwagę na najważniejsze z nich.

Przewodnik

Aby łatwo odnaleźć się w gąszczu różnych instalacji, poniżej przedstawiamy ikonografikę z najczęściej spotykanymi wariantami:

Rys. 1. Przewodnik po uzgadnianiu i zalecanych rozwiązaniach

Po pierwsze – czy zawsze rozłącznik DC?

Pojawiło się sporo wątpliwości: czy uzgodnienie instalacji PV z rzeczoznawcą ds. zabezpieczeń przeciwpożarowych jest tożsame z koniecznością stosowania rozłącznika DC? Otóż NIE!

Norma niemiecka VDE-AR-E 2100-712, która tak chętnie jest cytowana w różnych publikacjach mówi wyraźnie:

Folgende Massnahmen zur Umsetzung der Mindestanforderungen sind zu realisieren:

  • Kennzeichnung von Anlagen und PV-DC-Leitungsfuhrung (siehe Abschnitt 5) und bauliche und organisatorische InstallationsmaGnahmen (siehe Abschnitt 6)
    ODER
  • technische Installationsmassnahmen (siehe Abschnitt 7).

Die DC-Spannung kann nach dem Abschalten des AC-Netzes bestehen bleiben.

Co można przetłumaczyć następująco:

[Wg VDE-AR-E 2100-712] w celu zapewnienia spełnienia minimalnych wymagań należy wdrożyć następujące środki :

  • oznakowanie systemu i tras kablowych PV-DC (rozdział 5) oraz budowlane i organizacyjne środki instalacyjne (rozdział 6)
    LUB
  • techniczne środki instalacyjne (rozdział 7).

Napięcie DC może pozostać w instalacji po wyłączeniu sieci AC.

Również w publikacji SBF możemy znaleźć podobny fragment, który odwołuje się do budynków, w których nie ma PWP, tj. przeciwpożarowego wyłącznika prądu:

Rys. 2. zasady prowadzenia przewodów DC

W przypadku, gdy w budynku jest zainstalowany PWP i nie możemy wprowadzić napięcia do strefy pożarowej o kubaturze > 1000m3, możliwe jest (i zgodne z w/w niemiecką normą krajową) prowadzenie instalacji DC na zewnątrz – co w praktyce oznacza również montaż falownika PV na zewnątrz strefy pożarowej.

Po drugie – co to jest AFDD i AFCI?

Rys. 3. Wymogi dla zastosowania układów AFDD / AFCI.

Zacznijmy od dobrze znanych układów AFDD (ang. Arc Fault Detecting Device – układy wykrywania łuku). Polska wersja normy PN-HD 60364-4-42:2011 – “Instalacje elektryczne niskiego napięcia — Część 4-42: Ochrona dla zapewnienia bezpieczeństwa — Ochrona przed skutkami oddziaływania cieplnego” określa sytuacje szczególnego zagrożenia pożarowego, w których powinno instalować się te dodatkowe zabezpieczenia.

Natomiast normę międzynarodową PN-EN 62606 “Wymagania ogólne dla urządzeń do detekcji zwarć łukowych” stosuje się do urządzeń do detekcji zwarć łukowych (dalej nazywanych AFDD) przeznaczonych do użytku domowego i podobnych zastosowań w obwodach a.c.

Należy zatem zaznaczyć, że:

stosowanie układów AFDD jest niezależne od instalacji fotowoltaicznej w danym budynku. Innymi słowy: jeżeli budynek kwalifikuje się do stosowania układów AFDD, to powinny one zostać tam zainstalowane bez względu na obecność instalacji PV.

Trochę inaczej sprawa wygląda z układami AFCI (ang. Arc Fault Circuit Interrupter). Możemy dla uproszczenia przyjąć, że układy te stosuje się po stronie DC instalacji PV. Mogą one być wbudowane w falowniki.

Aktualnie w Europie nie istnieje standard ani norma, która opisywałaby budowę, działanie, sposób instalacji czy metodę badania takich układów. Oznacza to, że przeciętny chiński producent falowników może swoje produkty promować skrótem AFCI, co w praktyce równie dobrze może oznaczać “Almost Fantastic Chineese Inverter“. Żaden z europejskich producentów falowników nie oferuje tej funkcjonalności PRZED ustaleniem europejskiego standardu.

UWAGA! Nie jest wiadome, czy aktualnie stosowane układy AFCI, np. zabudowane w falownikach, będą spełniały wymagania europejskich norm, których wprowadzenie planowane jest na drugą połowę 2021 roku.

Po trzecie – optymalizatory i mikrofalowniki

Wytyczne SBF stawiają sprawę jasno:

Rys. 4. wymagania odnośnie połączeń DC

Po pierwsze: stosując urządzenia typu MLPE (ang. Module Level Power Electronics) należy zwrócić szczególną uwagę na rodzaje złącz DC w tych urządzeniach i przy modułach. Muszą one pochodzić od tego samego producenta i być tego samego typu! W przeciwnym wypadku narażamy się na możliwość powstania łuku elektrycznego, a w jego wyniku – pożaru. Więcej na ten temat w tym artykule.

Po drugie: stosowanie urządzeń MLPE takich jak zewnętrznie dołączane optymalizatory trzykrotnie zwiększamy ilość połączeń w porównaniu do instalacji z falownikiem łańcuchowym.

Rys. 5. ilość połączeń w instalacji: a) ze zwykłym falownikiem łańcuchowym, b) z dołączanymi układami MLPE / MLPS.

Jest to sprzeczne z zaleceniami poradnika, nakazującymi ograniczenie liczby połączeń DC w instalacji PV.

Podsumowanie

Przypominamy, że rozważając moc instalacji PV bierzemy pod uwagę generator – czyli moc modułów PV (a nie przetwornik, jakim jest falownik). Dlatego wszystkie wartości dla ułatwienia oznaczamy w “kWp”.

Jeśli instalacja PV ma ≤ 6.5 kWp

Brak konieczności uzgodnień z rzeczoznawcą ds. zabezpieczeń ppoż. Co oczywiście nie oznacza, że instalację można zrobić bez projektu, niechlujnie i niezgodnie z przepisami czy też normami.

Jeśli instalacja PV ma > 6.5 kWp, ale ≤ 50.0 kWp

Konieczne jest uzgodnienie “projektu tych urządzeń” z rzeczoznawcą ds. zabezpieczeń ppoż. Wspólnie z rzeczoznawcą powinny zostać dobrane adekwatne środki bezpieczeństwa. I nie polega to na tym, aby bezkrytycznie pakować do instalacji “wyłączniki strażaka” lub układy MLPS (optymalizatory, mikrofalowniki), ponieważ zbyt duża ilość zbędnych urządzeń i dodatkowych połączeń zwiększa ryzyko powstania pożaru w instalacji PV!

Środki organizacyjne, o których mówią normy i wytyczne SBF to:

  • prowadzenie przewodów DC poza zasięgiem ręki, podtynkowo lub w korytkach kablowych EI30
  • prawidłowe oznakowanie tras kablowych DC

Jeżeli jednak w budynku znajduje się PWP (przeciwpożarowy wyłącznik prądu), rozwiązaniem akceptowalnym jest pozostawienie przewodów DC poza strefą pożarową, czyli: montaż falownika PV na zewnątrz tej strefy.

Rys. 6. montaż falowników na zewnątrz strefy pożarowej. Do strefy nie jest wprowadzane napięcie, ponieważ przy zaniku napięcia AC falownik ma obowiązek rozłączyć stronę AC.

Jeśli instalacja PV ma > 50.0 kWp

Dla takiej instalacji wymaganie jest uzyskanie pozwolenia na budowę, a co za tym idzie: uprzednie przygotowanie projektu budowlanego przez osoby posiadające odpowiednie uprawnienia.

Również w tym przypadku możliwe jest wykorzystanie rozwiązań organizacyjnych stosowanych w instalacjach o mocy > 6.5 kWp, ale ≤ 50.0 kWp.

A teraz – do pobrania!

Uzgadnianie projektów instalacji PV z rzeczoznawcą ds. zabezpieczeń przeciwpożarowych

Uzgadnianie projektów instalacji PV z rzeczoznawcą ds. zabezpieczeń przeciwpożarowych

Ostatnia aktualizacja: 10.09.2020

W świetle ostatnich zmian w przepisach prawa budowlanego nakazujących do urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej większej niż 6,5 kW wprowadzających obowiązek uzgodnienia z rzeczoznawcą do spraw zabezpieczeń przeciwpożarowych projektu tych urządzeń oraz zawiadomienia organów Państwowej Straży Pożarnej, wśród inwestorów i instalatorów pojawiło się sporo wątpliwości i pytań. Dlatego zapraszamy do lektury niniejszego artykułu, który odpowiada na większość z nich.

Zapraszamy do obejrzenia webinarium pt. “Bezpieczeństwo instalacji PV“.


Instalacje fotowoltaiczne są bezpieczne!

Najważniejszym wnioskiem różnych badań prowadzonych w Europie jest to, że przy prawidłowej instalacji systemy PV są super bezpieczne. Dlatego tak ważne jest stosowanie norm, standardów i przepisów, które zawierają wytyczne dotyczące poprawnego projektu i instalacji W tym artykule podsumowujemy najważniejsze zasady i kryteria wyboru elementów systemu oraz zalecenia dotyczące instalacji w kontekście uzgadniania projektów instalacji PV z rzeczoznawcą ds. zabezpieczeń przeciwpożarowych. Zwracamy również uwagę, że projekt systemu, w którym występuje jak najmniejsza liczba (profesjonalnie zainstalowanych, kompatybilnych) połączeń wtykowych prądu stałego oraz wysokiej jakości falownik ze zintegrowanymi zabezpieczeniami sprawia, że bezpieczna technologia fotowoltaiczna jest jeszcze bezpieczniejsza.

Przez kilka dziesięcioleci fotowoltaika sprawdziła się jako zrównoważona, elastyczna i skuteczna technologia wytwarzania energii. Zgodnie z danymi opublikowanymi przez BRE National Solar Centre, niezależny instytut badawczy z Wielkiej Brytanii w publikacji  „Fire and Solar PV Systems – Investigations and Evidence in July 2017” –  prawidłowo zaprojektowana oraz eksploatowana instalacja nie stwarza zwiększonego ryzyka powstania pożaru w budynku. Badanie BRE wykryło mniej niż 60 incydentów pożarowych na rynku około 1 miliona systemów zainstalowanych w ciągu ostatnich siedmiu lat – z czego 42 stwierdzono jako spowodowane przez system fotowoltaiczny, a tylko 17 z nich oznaczono jako „poważne pożary”, które rozprzestrzeniły się poza źródło. Podobne wnioski płyną również z innych raportów opublikowanych m.in. przez TÜV Rheinland we współpracy z Instytutem Systemów Energetyki Słonecznej im. Fraunhofera gdzie wskazuje się, że pożary wywołane przez system PV stanową zaledwie 0,016% w odniesieniu do wszystkich instalacji fotowoltaicznych powstałych w Niemczech.

Zmiany w ustawie prawo budowlane

Zgodnie z Ustawą z dnia 13 lutego 2020 r. o zmianie ustawy – Prawo budowlane oraz niektórych innych ustaw (Dz. U. 2020 poz. 471) od 19.09.2020 nowe brzmienie otrzymuje Art. 29 prawa budowlanego, a wraz z nim:

„4. Nie wymaga decyzji o pozwoleniu na budowę oraz zgłoszenia […] wykonywanie robót budowlanych polegających na:

3) instalowaniu:

c) pomp ciepła, wolno stojących kolektorów słonecznych, urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej nie większej niż 50 kW z zastrzeżeniem, że do urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej większej niż 6,5 kW[1] stosuje się obowiązek uzgodnienia z rzeczoznawcą do spraw zabezpieczeń przeciwpożarowych pod względem zgodności z wymaganiami ochrony przeciwpożarowej, zwany dalej „uzgodnieniem pod względem ochrony przeciwpożarowej”, projektu tych urządzeń oraz zawiadomienia organów Państwowej Straży Pożarnej, o którym mowa w art. 56 ust. 1a”

A zatem po 19.09.2020 konieczne będzie potwierdzenie przez rzeczoznawcę w formie uzgodnienia, że spełnione są wymagania ochrony przeciwpożarowej nowoprojektowanej instalacji fotowoltaicznej, gdy łączna moc modułów będzie większa niż 6,5kWp. Innymi słowy, projekt techniczny takiej instalacji będzie wymagał obowiązkowego uzgodnienia pod względem zgodności z wymaganiami ochrony przeciwpożarowej z uwagi na Art. 29 ust. 4 pkt. 3 lit. c. (Dz. U. 2020 poz. 1333).

Na chwilę obecną przepisy nie wskazują jakie wymagania należy spełnić w kontekście projektowanej instalacji fotowoltaicznej. Należy zatem przyjąć, że zakres opracowania powinien obejmować istotne elementy wskazane w § 4 ust. 1 rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 2 grudnia 2015r. w sprawie uzgadniania projektu budowlanego pod względem ochrony przeciwpożarowej  (Dz. U. z 2015r., poz. 2117). Zakres ten będzie oczywiście zależny m.in. od kategorii zagrożenia ludzi przedmiotowego budynku.

Budynki oraz części budynków z uwagi na przeznaczenie i sposób użytkowania, dzieli się na:

  • mieszkalne, zamieszkania zbiorowego i użyteczności publicznej charakteryzowane kategorią zagrożenia ludzi, określane dalej jako ZL I, ZL II, ZL III, ZL IV, ZL V;
  • produkcyjne i magazynowe, określane dalej jako PM;
  • inwentarskie (służące do hodowli inwentarza), określane dalej jako IN.

[1] Moc zainstalowana instalacji fotowoltaicznej interpretowana jest jako moc pola modułów, dlatego należy to rozumieć jako „6,5kWp”.

Budynki mieszkalne jednorodzinne

Budynki na dachach których najczęściej projektowana jest instalacja fotowoltaiczna, to budynki mieszkalne jednorodzinne. Budynki takie klasyfikuje się jako ZL IV, jednak z punktu widzenia projektowego są specyficzną grupą obiektów, które przy projektowaniu najczęściej nie wymagają uzgodnienia z rzeczoznawcą ds. zabezpieczeń przeciwpożarowych [2]. Mają też znacznie mniejsze wymagania w zakresie ochrony przeciwpożarowej np. dla budynków niskich (N) nie określa się chociażby klasy odporności pożarowej oraz innych istotnych parametrów jak odporność ogniowa ścian wewnętrznych, konstrukcji dachu czy przekrycia dachu. Pozornie mogłoby się wydawać, że zaprojektowanie w takim obiekcie instalacji fotowoltaicznej nie będzie ograniczone żadnymi dodatkowymi wymaganiami, ale nie do końca jest to prawda. W Polsce nie występują przepisy szczegółowe dotyczące projektowania instalacji PV z uwagi na przepisy przeciwpożarowe. Nie mniej jednak Prawo Budowlane w art. 5 nakazuje projektowania obiektu budowlanego oraz urządzeń z nim związanych w taki sposób, żeby zapewnić odpowiednie bezpieczeństwo pożarowe. Bezsprzecznie instalacja PV jest takim urządzeniem i nie może być ignorowana w procesie projektowym. Ten sam artykuł tj. Art. 5 ust. 1 określa, że instalacja (urządzenia) może być projektowana na zasadach wiedzy technicznej. Wiedzą techniczną są normy i publikacje, ale także wykorzystanie polskich przepisów, które nie są przeznaczone bezpośrednio dla instalacji PV. Dotyczy to chociażby rozporządzenia MSWiA ws. uzgadniania projektu budowlanego pod względem ochrony przeciwpożarowej. Rozporządzenie to określa wytyczne dla projektów budowlanych, nie projektów technicznych (o których mowa w przypadku instalacji ≤ 50kWp), jednak zapisy te mogą być wykorzystane – poprzez pewne analogie – w projektach budowlanych instalacji fotowoltaicznych.

W zakresie opracowania to projektant powinien określić, czy projektowana przez niego instalacja ma wpływ na następujące parametry:

  • przewidywaną gęstość obciążenia ogniowego,
  • ocenę zagrożenia wybuchem pomieszczeń oraz przestrzeni zewnętrznych,
  • informację o stopniu rozprzestrzeniania ognia elementów budowlanych,
  • podział obiektu na strefy pożarowe
  • informacje o usytuowaniu z uwagi na bezpieczeństwo pożarowe, w tym o odległości od obiektów sąsiadujących,
  • informacje o warunkach i strategii ewakuacji ludzi lub ich ratowania w inny sposób.

oraz dodatkowo informacje o sposobie zabezpieczenia przeciwpożarowego instalacji PV, a także rozwiązania zmniejszające ryzyko powstania pożaru. Aby spełnić te wymogi należy skorzystać z następujących zasad wiedzy technicznej:

  • połączenia DC zaprojektować za pomocą szybkozłączek (np. złączy MC4) wyłącznie tego samego typu i producenta,
  • zminimalizować w instalacji ilość połączeń DC,
  • trasy przewodów DC prowadzić w metalowych kanałach kablowych (eliminując wszelkie ostre krawędzie), a tam gdzie to konieczne w obudowie zapewniającej EI 30, EI 60 lub EI 120,
  • trasy przewodów odpowiednio oznakować: „Niebezpieczeństwo – wysokie napięcie DC w ciągu dnia obecne po wyłączeniu instalacji”,
  • przepusty instalacyjne przez ściany oddzielenia przeciwpożarowego należy zabezpieczyć w tej samej klasie odporności ogniowej co przegroda,
  • zapewnić ochronę odgromową urządzeń fotowoltaicznych (jeżeli na budynku istnieje instalacja odgromowa).

Wyposażenie w gaśnice

Najszybciej do akcji gaśniczej mogą przystąpić mieszkańcy danego budynku. Dlatego – choć nie ma tu wymogów formalno-prawnych – należy zapewnić wyposażenie instalacji PV w gaśnicę proszkową 4 kg ABC (GP-4x) zlokalizowaną w pobliżu falownika PV, zwłaszcza, że koszt takiej gaśnicy jest niewielki. Grupa gaśnic, którymi wolno gasić urządzenia pod napięciem posiada napis na polu etykiety informujący „Do gaszenia urządzeń pod napięciem elektrycznym do 1000V” i są to wszystkie gaśnice proszkowe i śniegowe, przy czym wymagane jest zachowanie minimalnej odległości 1m od gaszonego urządzenia). Od niedawna można również zastosować gaśnice mgłowe GWM-3x lub GWM-6x – bezpieczne przy gaszeniu urządzeń elektronicznych pod napięciem i bardzo skuteczne. Nie uszkadzają przy tym układów elektronicznych – nie należy mylić z uszkodzeniem spowodowanym temperaturą od ognia – niemniej – są około 4 razy droższe od gaśnic proszkowych.

Gaśnica proszkowa GP-4x

Oznakowanie budynku

Ponadto w celu zapewnienia odpowiedniego bezpieczeństwa dla ekip ratowniczo gaśniczych należy odpowiednio oznakować obiekt wyposażony w PV (zgodnie z normą PN-EN 60364-7-712).
Naklejka z wizerunkiem modułów PV na dachu budynku powinna być umieszczona:

  • w miejscu przyłączenia instalacji PV,
  • w rozdzielni głównej budynku,
  • przy liczniku oraz
  • przy głównym wyłączniku zasilania.

Rys. 1. Oznakowanie obiektu wyposażonego w PV zgodnie z normą PN-EN 60364-7-712

Przygotowanie obiektu budowlanego i terenu do prowadzenia działań ratowniczo-gaśniczych

Z uwagi na zapewnienie bezpieczeństwa ekip ratowniczych podczas działań, należy wykonać oznaczenia następujących składowych instalacji fotowoltaicznej oraz wykonania planu urządzenia fotowoltaicznego. Część graficzna powinna zawierać:

  • obszar lokalizacji modułów PV,
  • lokalizację falownika/ów PV,
  • miejsca usytuowania elementu (np. rozłącznika) zapewniającego odłączenie napięcia po stronie DC falownika (nawet jeśli stanowi wyposażenie falownika PV),
  • przebieg tras oprzewodowania prądu stałego pozostających pod napięciem,
  • ewentualnych ognioodpornych obudów lub osłon projektowanych na tym oprzewodowaniu,
  • opcjonalnie przebiegu tras oprzewodowania prądu przemiennego,
  • legendę zastosowanych oznaczeń graficznych i literowych,
  • wskazanie osób lub podmiotów opracowujących plan oraz datę jego opracowania.

Przykładową kartę informacyjną obiektu, wzorowaną na niemieckiej normie VDE-AR-2100-7200 przedstawiono na rysunku 2.

Karta zgłoszenia do organów Państwowej Straży Pożarnej
Rys. 2. Proponowana karta informacyjna stanowiąca załącznik projektu instalacji PV
(na wzór niemieckiej normy VDE-AR-2100-712)

Należy podkreślić, że dla budynków o kubaturze do 1000 m3 nie ma wymogu i konieczności stosowania przeciwpożarowego wyłącznika prądu, ani konieczności wyłączania zasilania po stronie DC. Również standardy i normy europejskie, w tym stawiana za wzór niemiecka norma VDE-AR-2100-712 nie narzuca takiego wymogu. Ważne jest oznakowanie instalacji, które informuje stosowne służby ratownicze o zagrożeniu. Ponadto, akcje gaśniczo-ratunkowe zawsze prowadzone są z zachowaniem zasady ograniczonego zaufania, tj. w taki sposób, jakby wszystkie obwody były pod napięciem – bez względu na zastosowane rozwiązania techniczne, czy markę producenta falownika.


[2] Dla budynków mieszkalnych ZL IV od grupy wysokości „średniowysokie” wymagane jest obligatoryjne uzgodnienie.

Budynki z przeciwpożarowym wyłącznikiem prądu (PWP)

Natomiast w przypadku budynków, dla których wymagany jest Przeciwpożarowy Wyłącznik Prądu (np. te, które mają strefy pożarowe o kubaturze większej niż 1000m3) dodatkowo należy zapewnić:

Pozostałe budynki, na dachu których projektowane są instalacje fotowoltaiczne, to budynki zaliczone do kategorii PM, IN oraz do kategorii zagrożenia ludzi:

  • ZL I – np. restauracje, kina, sale balowe, duże sklepy zazwyczaj wielkopowiezrzchniowe,
  • ZL II – szpitale, budynki opieki zdrowotnej, żłobki, szpitale jednego dnia, DPSy,
  • ZL III – budynki użyteczności publicznej np. urzędy, sklepy, banki, biurowce,
  • ZL IV – budynki mieszkalne wielorodzinne tzw. bloki mieszkalne, apartamentowce,
  • ZL V – hotele, akademiki, bursy itp.

Do takiego projektu należy zawsze podejść w sposób indywidualny, uwzględniający aktualne rozwiązania ochrony przeciwpożarowej zastosowane w danym obiekcie. Niemniej w projekcie powinny się znaleźć wszystkie elementy dotyczące budynków mieszkaniowych indywidualnych, oraz dodatkowo:

  • informacje o możliwym wpływie instalacji PV na urządzenia przeciwpożarowe i inne urządzenia służące bezpieczeństwu pożarowemu, dostosowanemu do wymagań wynikających z przepisów dotyczących ochrony przeciwpożarowej i przyjętych scenariuszy pożarowych, z podstawową charakterystyką tych urządzeń,
  • lokalizacje elementów instalacji fotowoltaicznej względem urządzeń oddymiających,
  • w przypadku występowania w budynku Systemu Sygnalizacji Pożarowej, należy dokonać aktualizacji scenariusza pożarowego przez rzeczoznawcę ds. zabezpieczeń przeciwpożarowych,
  • Instrukcję Bezpieczeństwa Pożarowego należy zaktualizować o dział związany z bezpieczeństwem pożarowym instalacji fotowoltaicznej oraz sposobem postępowania w przypadku wystąpienia pożaru takiej instalacji.
  • należy zrealizować odłączenie zasilania przeciwpożarowym wyłącznikiem prądu (PWP).

W przypadku tego ostatniego wymagania warto przytoczyć Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U.2019 poz. 1065):

§ 183 Warunki techniczne dotyczące instalacji elektrycznych
[…]
2. Przeciwpożarowy wyłącznik prądu, odcinający dopływ prądu do wszystkich obwodów, z wyjątkiem obwodów zasilających instalacje i urządzenia, których funkcjonowanie jest niezbędne podczas pożaru, należy stosować w strefach pożarowych o kubaturze przekraczającej 1000 m3 lub zawierających strefy zagrożone wybuchem.

Jeśli zatem w budynku występują strefy pożarowe o kubaturze powyżej 1000 m3 lub przeciwpożarowy wyłącznik prądu, instalacja PV musi zostać zaprojektowana w sposób umożliwiający odłączenie od zasilania w energię elektryczną przewodów prowadzonych przez budynek.

Opcja 1 – zewnętrzny rozłącznik DC

W związku z tym zastosowano następujące rozwiązanie polegające na zastosowaniu rozłącznika DC na dachu budynku przy jednoczesnym spełnieniu przez ten rozłącznik następujących wymagań:

  • rozłącznik DC musi być atestowany i certyfikowany do działania w warunkach pożaru,
  • musi izolować wszystkie przewody pod napięciem,
  • rozłącznik DC musi być przystosowany do prądu stałego,
  • rozłącznik DC musi posiadać wyraźnie zaznaczone pozycje WŁ. i WYŁ,
  • musi być zgodny z normą PN-EN 60947-3:2009 – „Aparatura rozdzielcza i sterownicza niskonapięciowa — Część 3: Rozłączniki, odłączniki, rozłączniki izolacyjne i zestawy łączników z bezpiecznikami topikowymi”,
  • obudowy rozłączników powinny być również oznaczone napisem „Niebezpieczeństwo – zawiera części pod napięciem w ciągu dnia”. Wszystkie etykiety muszą być wyraźne, dobrze widoczne, zbudowane i przymocowane do końca oraz czytelne.
Rys. 3. Wariant z zewnętrznym rozłącznikiem DC

Warto zaznaczyć, że urządzenia typu MLPS (obniżanie napięcia na poziomie modułu) bardzo często nie spełniają wymogów rozłączników stosowanych w ochronie przeciwpożarowej i nie mogą być jedynym sposobem zabezpieczania instalacji fotowoltaicznej przed wprowadzeniem napięcia do strefy pożarowej o kubaturze powyżej 1000 m3. Dodatkowo, dla przeciwpożarowych wyłączników prądu elementy składowe, takie jak: urządzenia uruchamiające, urządzenia sygnalizujące, urządzenia wykonawcze od dnia 01.01.2021 roku jako wyroby budowlane zostaną objęte obowiązkiem sporządzania przez producentów krajowej deklaracji właściwości użytkowych (znak budowlany „B”).

Opcja 2 – montaż falownika na zewnątrz strefy pożarowej

W związku z tym zastosowano następujące rozwiązanie polegające na montażu falowników poza strefą pożarową, względem której dokonano instalacji modułów PV. Dodatkowo należy zapewnić:

  • prowadzenie przewodów DC w sposób podobny do tych, które muszą pozostać pod napięciem w przypadku pożaru: kable odporne na działanie wysokiej temperatury i wody, obudowanie kabli ogniochronnym kanałem kablowym lub poprowadzenie ich trasami wydzielonymi pożarowo w klasie EI 60 lub EI 120,
  • umieszczenie informacja o instalacji PV przy przeciwpożarowym wyłączniku prądu,
  • uzupełnienie „Instrukcji Bezpieczeństwa Pożarowego” o sekcję dotyczącą instalacji PV wraz z częścią graficzną.
Rys. 4. Wariant z umiejscowieniem falownika (oraz obwodów DC) poza strefą pożarową o kubaturze > 1000 m3

Optymalizatory mocy – niebezpieczny środek bezpieczeństwa

Oczywiste jest, że złącza DC są potrzebne do połączenia modułów fotowoltaicznych, a także do podłączenia powstałych ciągów do falownika, ale każde dodatkowe połączenie na dachu zwiększa prawdopodobieństwo wystąpienia pożaru. Dlatego przy projektowaniu systemu fotowoltaicznego minimalizacja liczby punktów kontaktowych na dachu powinna być ważnym założeniem w celu zwiększenia bezpieczeństwa systemów fotowoltaicznych.

Jak zauważyli TÜV Rheinland i Fraunhofer ISE (Sepanski i in. 2015, s. 204): „Każdy dodatkowy element stwarza ryzyko dodatkowych punktów kontaktowych i innych źródeł błędów. „Elegancki” system z jak najmniejszą liczbą komponentów ma tę zaletę, że ma mniej punktów, w których może dojść do uszkodzenia systemu”.

Niezintegrowane układy elektroenergetyczne, takie jak klasyczne optymalizatory mocy prądu stałego, stosowane w celu wyłączania napięcia na poziomie modułu, wymagają zastosowania dodatkowych złączy prądu stałego na każdym module. Oznacza to, że liczba punktów połączenia na dachu zostanie znacznie zwiększona. W celach ilustracyjnych rysunek 5 pokazuje układ PV o mocy 6 kW z falownikiem szeregowym, a rysunek 6: z optymalizatorami prądu stałego. Jak pokazano, dodatkowe urządzenia zainstalowane na modułach fotowoltaicznych w obwodzie prądu stałego prawie trzykrotnie zwiększają liczbę punktów styku na dachu: 61 złączy z optymalizatorami, w porównaniu do 21 złączy dla falownika łańcuchowego.

Dlatego znacznie bardziej prawdopodobne jest wystąpienie błędów instalacji i niedopasowania złączy prądu stałego, co z kolei zwiększa ryzyko pożaru. Ta ostatnia jest dalej zwiększana, ponieważ niektórzy producenci optymalizatorów dostarczają swoim produktom bardzo niewiele opcji różnych producentów złącz DC (ECN TNO 2019), co stwarza większe ryzyko niedopasowania (niekompatybilności) złączy DC podczas instalacji.

Rys. 5. Konfiguracja systemu o mocy 6 kW z falownikiem łańcuchowym.
Rys. 6. Konfiguracji systemu o mocy 6 kW z dodatkowymi optymalizatorami.

Akty prawne i normy stanowiące podstawę opracowania

Przy opracowaniu projektu należy korzystać z następujących norm, ustaw i rozporządzeń:

  • Ustawa z dnia 24 sierpnia 1991 roku o ochronie przeciwpożarowej (Dz. U. z 2020 r., poz. 961 tekst jednolity).
  • Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. z 2019 r. poz. 1065 tekst jednolity).
  • Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 2 grudnia 2015 roku w sprawie uzgadniania projektu budowlanego pod względem ochrony przeciwpożarowej (Dz. U. z 2015r., poz. 2117).
  • Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 roku w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (Dz. U. z 2010 r. nr 109, poz. 719) wraz ze zmianami (Dz.U. 2019 poz. 67)
  • Ustawa Prawo Budowlane z dnia 7 lipca 1994 r.  (Dz. U. 2020 poz. 1333 tekst jednolity)
  • PN-HD 60364-7-712:2016 Instalacje elektryczne niskiego napięcia – Część 7 –712: Wymagania dotyczące specjalnych instalacji lub lokalizacji – Fotowoltaiczne (PV) układy zasilania;
  • PN-EN IEC 61730-1:2018-06 Ocena bezpieczeństwa modułu fotowoltaicznego (PV) – Część 1: Wymagania dotyczące konstrukcji;
  • PN-EN IEC 61730-2:2018-06 Ocena bezpieczeństwa modułu fotowoltaicznego (PV) – Część 2: Wymagania dotyczące badań.
  • PN-EN 62446-1:2016-08 oraz PN-EN 62446-1:2016-08/A1:2019-01 Systemy fotowoltaiczne (PV) – Wymagania dotyczące badań, dokumentacji i utrzymania – Część 1: Systemy podłączone do sieci – Dokumentacja, odbiory i nadzór;

A co z zawiadomieniem organów Państwowej Straży Pożarnej?

Nie ma wytycznych lub rozporządzeń, które regulowałyby ten wymóg narzucony w/w Ustawą. Na chwilę obecną wydaje się być zasadnym przekazanie zwięzłej informacji o dokonaniu montażu instalacji PV na budynku pod wskazanym adresem. Dzięki uprzejmości firmy F&K Engineering Consultants, właściciela platformy https://rzeczoznawcappoz-online.pl/, przekazujemy Państwu przykładowy wzór “zawiadomienia organów Państwowej Straży Pożarnej, o którym mowa w art. 56 ust. 1a“, zgodnie z Ustawą z dnia 13 lutego 2020 r. o zmianie ustawy – Prawo budowlane oraz niektórych innych ustaw (Dz. U. 2020 poz. 471)

Bezpieczeństwo z firmą Fronius

Firma Fronius przykłada bardzo dużą wagę do bezpieczeństwa instalacji PV. Podejmujemy szereg działań w tym zakresie, które są naturalną konsekwencją 25-letniego doświadczenia firmy w branży fotowoltaicznej.

  • Podstawą bezpiecznej instalacji jest jej poprawne zaprojektowanie i wykonanie. Dlatego stale szkolimy naszych instalatorów i wyposażamy ich w najbardziej aktualną wiedzę.
  • Zgodność ze standardami to podstawa, ale zwykle przekraczamy ich wymagania, stawiając na najwyższą jakość w projektowaniu i produkcji falowników.
  • Dobry monitoring jest aniołem stróżem systemu fotowoltaicznego. Oferujemy falowniki wyposażone w wiele funkcji ciągłego monitorowania stanu instalacji.
  • Klasyczne falowniki wymagają minimalnej ilości połączeń po stronie DC, co zmniejsza ryzyko powstania pożaru.

Więcej materiałów na temat bezpieczeństwa pożarowego instalacji fotowoltaicznych.

Dodatek: fragment Ustawy prawo budowlane

Nowa wersja (obowiązująca od 19-09-2020)

Montażu pomp ciepła, wolno stojących kolektorów słonecznych, urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej nie większej niż 50 kW z zastrzeżeniem, że do urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej większej niż 6,5 kW stosuje się obowiązek uzgodnienia z rzeczoznawcą do spraw zabezpieczeń przeciwpożarowych pod względem zgodności z wymaganiami ochrony przeciwpożarowej, zwany dalej „uzgodnieniem pod względem ochrony przeciwpożarowej”, projektu tych urządzeń oraz zawiadomienia organów Państwowej Straży Pożarnej, o którym mowa w art. 56 ust. 1a,

Stara wersja (obowiązująca do 18-09-2020)

montażu pomp ciepła, wolnostojących kolektorów słonecznych, urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej nie większej niż 50 kW oraz mikroinstalacji biogazu rolniczego w rozumieniu art. 19 ust. 1 ustawy z dnia 20 lutego 2015 r. o odnawialnych źródłach energii (Dz. U. z 2018 r. poz. 2389, z późn. zm.3) ) z zastrzeżeniem, że do urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej większej niż 6,5 kW oraz mikroinstalacji biogazu rolniczego, stosuje się obowiązek uzgodnienia pod względem zgodności z wymaganiami ochrony przeciwpożarowej projektu budowlanego, o którym mowa w art. 6b ustawy z dnia 24 sierpnia 1991 r. o ochronie przeciwpożarowej (Dz. U. z 2019 r. poz. 1372 i 1518), oraz zawiadomienia organów Państwowej Straży Pożarnej, o którym mowa w art. 56 ust. 1a tej ustawy;

Podsumowanie

Przypominamy, że rozważając moc instalacji PV bierzemy pod uwagę generator – czyli moc modułów PV (a nie przetwornik, jakim jest falownik). Dlatego wszystkie wartości dla ułatwienia oznaczamy w “kWp”.

Jeśli instalacja PV ma ≤ 6.5 kWp

Brak konieczności uzgodnień z rzeczoznawcą ds. zabezpieczeń ppoż. Co oczywiście nie oznacza, że instalację można zrobić bez projektu, niechlujnie i niezgodnie z przepisami czy też normami.

Jeśli instalacja PV ma > 6.5 kWp, ale ≤ 50.0 kWp

Konieczne jest uzgodnienie “projektu tych urządzeń” z rzeczoznawcą ds. zabezpieczeń ppoż. Wspólnie z rzeczoznawcą powinny zostać dobrane adekwatne środki bezpieczeństwa. I nie polega to na tym, aby bezkrytycznie pakować do instalacji “wyłączniki strażaka” lub układy MLPS (optymalizatory, mikrofalowniki), ponieważ zbyt duża ilość zbędnych urządzeń i dodatkowych połączeń zwiększa ryzyko powstania pożaru w instalacji PV!

Środki organizacyjne, o których mówią normy i wytyczne SBF to:

  • prowadzenie przewodów DC poza zasięgiem ręki, podtynkowo lub w korytkach kablowych EI30
  • prawidłowe oznakowanie tras kablowych DC

Jeżeli jednak w budynku znajduje się PWP (przeciwpożarowy wyłącznik prądu), rozwiązaniem akceptowalnym jest pozostawienie przewodów DC poza strefą pożarową, czyli: montaż falownika PV na zewnątrz tej strefy.

Jeśli instalacja PV ma > 50.0 kWp

Dla takiej instalacji wymaganie jest uzyskanie pozwolenia na budowę, a co za tym idzie: uprzednie przygotowanie projektu budowlanego przez osoby posiadające odpowiednie uprawnienia.

Również w tym przypadku możliwe jest wykorzystanie rozwiązań organizacyjnych stosowanych w instalacjach o mocy > 6.5 kWp, ale ≤ 50.0 kWp.

Pliki do pobrania

Dodatkowa lektura

Zapraszamy do lektury artykułu: Nowe wytyczne Stowarzyszenia branży Fotowoltaicznej – jak czytać?, gdzie również można pobrać poradnik SBF.


WEBINARIUM “BEZPIECZEŃSTWO INSTALACJI PV”

Zapraszamy do obejrzenia webinarium.

Fotowoltaiczny Dekalog Dobrych Praktyk

Fotowoltaiczny Dekalog Dobrych Praktyk

Ochrona przeciwpożarowa instalacji fotowoltaicznych jest jednym z głównych poruszanych tematów w branży PV w ostatnich miesiącach. Stowarzyszenie Branży Fotowoltaicznej POLSKA PV wraz z firmami członkowskimi – między innymi z firmą Fronius Polska – przygotowało poradnik zawierający 10 najważniejszych zasad w zakresie projektowania, montażu i serwisowania instalacji PV wpływających na poprawę bezpieczeństwa pożarowego instalacji. 

Mimo iż instalacje fotowoltaiczne same w sobie są bezpieczne wymagają odpowiedniego projektu i montażu aby to bezpieczeństwo zachować.  

Poniżej udostępniamy link do wersji elektronicznej poradnika. Zapraszamy do lektury.

FRONIUS TAURO – Dostępny w PV*SOL i PVsyst

FRONIUS TAURO – Dostępny w PV*SOL i PVsyst

Premiera nowych falowników Tauro jest zaplanowana na koniec drugiego kwartału 2020 r. — ale już dziś można projektować indywidualne instalacje fotowoltaiczne za pomocą praktycznych narzędzi i w ten sposób skrócić sobie czas oczekiwania na produkt.

Prosta kalkulacja parametrów instalacji

Bezpłatne narzędzie Fronius Solar.Configurator pozwala w kilku krokach określić optymalne parametry instalacji na pokrycie konkretnego zapotrzebowania.

Wystarczy kilka kliknięć, aby na przykład skonfigurować nowy falownik Tauro do współpracy z daną instalacją PV i dowiedzieć się, jaka konfiguracja (obejmująca moduły, falowniki) jest w tym przypadku zalecana. 

Poniższy link kieruje bezpośrednio na stronę Fronius.Solar.Configurator: https://solarconfigurator.solarweb.com

Kalkulacja zysku przy użyciu najnowocześniejszych metod

Dalsze czynności w ramach projektowania całej instalacji można zaplanować za pomocą narzędzi PV*SOLPVsyst.

Dane dla narzędzia PV*SOL są już zapisane w systemie, natomiast dla narzędzia PVsyst są udostępniane jako plik do pobrania, który po zaimportowaniu może posłużyć do wygenerowania odpowiednich wyników symulacji.

W najbliższym czasie planowana jest integracja z bazą danych PVsyst.

Nowy falownik Tauro: drastyczna redukcja kosztów BOS

Dzięki najróżniejszym topologiom instalacji trójfazowy falownik Tauro wyróżnia się elastycznością podczas planowania, zaś jego wytrzymałość pozwala uzyskać najwyższą wydajność nawet w najtrudniejszych warunkach.

Inteligentna konstrukcja pozwala dodatkowo zoptymalizować koszty BOS (Balance of System) i jednocześnie zapewnia absolutną efektywność przy projektowaniu systemu.

Tauro wyróżnia się jednak jeszcze większą liczbą praktycznych funkcji — więcej informacji można znaleźć pod adresem: www.fronius.pl/solar/tauro

Instalowanie ochronników przepięciowych w falownikach Fronius <10kW

Instalowanie ochronników przepięciowych w falownikach Fronius <10kW

Z przyjemnością informujemy, że właśnie wprowadziliśmy do oferty zestaw ochronników przeciwprzepięciowych SPD (DC SPD 8.2 TYP 1 + 2 M) dla małej serii SnapINverter.

W przypadku rodziny falowników SYMO, modele od SYMO 10.0-3-M aż do SYMO 20.0-3-M, oraz falowników ECO 25.0-3-S i ECO 27.0-3-S, od dawna możliwe jest zabudowanie ochronników przepięciowych wewnątrz falownika, a dokładnie na jego bazie montażowej. Wszystkim zainteresowanym polecamy ten artykuł.

Od teraz możliwe jest również zabudowa ochronników SPD na bazie montażowej modeli Fronius o mocy od 3.0 do 8.2kW.

Co to jest DC SPD 8.2 TYP 1 + 2 M?

Zestaw DC SPD 8.2 TYP 1 + 2 M służy do ochrony przeciwprzepięciowej typ 1 + 2, który można zainstalować w przedziale przyłączeniowym rodziny “małych” falowników SnapINverter:

  • Fronius Symo 3.0-3-S – 4.5-3-S
  • Fronius Symo 3.0-3-M – 8.2-3-M
  • Fronius Primo 3.0-3-M – 8.2-3-M
  • Fronius Symo Hybrid 3.0-3-S – 5.0-3-S

Jak zamawiać?

Zamówienie zestawu jest możliwe u Dystrybutorów produktów Fronius pod następującym indeksem: 4,240,335,CK

Wersje

Dostępna tylko jedna wersja, SPD typu 1 + 2, do użytku z urządzeniami z 1 lub 2 MPPT.

Ten artykuł można zamówić tylko jako zestaw do dołożenia do falownika. Nie można go zamówić jako opcji wstępnie zainstalowanej w procesie produkcyjnym (tak jak oferujemy go z SPD dla dużego SnapINverter).

Dostępność

SPD jest już dostępny w sprzedaży.

Ważne informacje dotyczące zgodności:

DC SPD 8.2 TYP 1 + 2 M można zainstalować w falowniku SnapINverter o numerze seryjnym wyższym niż 30408866. Starszych falowników nie można modernizować!

Powód: aby móc zainstalować zestaw SPD, konieczne było dostosowanie bazy montażowej falownika. Polega ona na dodaniu w trakcie produkcji trzech śrub montażowych zaznaczonych na zdjęciu poniżej.

Jakie są główne korzyści?

Jeśli w pobliżu falownika wymagany jest SPD DC, instalator musiał zakupić i zainstalować osobną skrzynkę DC.

Za pomocą tego zestawu może zainstalować DC SPD w przedziale przyłączeniowym falownika, oszczędzając czas i koszty instalacji.

SPD ma certyfikat Typu 1 + 2, więc można go używać zawsze, gdy wymagany jest Typ 2 lub Typ 1 + 2.

Można go używać w konfiguracjach dla pojedynczego i podwójnego MPPT.

Jeśli SPD ulegnie uszkodzeniu, falownik wyświetli ostrzeżenie na wyświetlaczu oraz w Solar.web. Więcej informacji: patrz materiały poniżej.

Sposób instalacji – film

Oto instrukcja jak samodzielnie wyposażyć w/w falowniki w ochronę przeciwprzepięciową po stronie DC.

UWAGA! Ze względu na wysokie napięcia i niebezpieczeństwo utraty życia i zdrowia montaż może zostać wykonany wyłącznie przez przeszkolony personel posiadający stosowne uprawnienia elektryczne.

Pliki do pobrania


Dokumenty i schematy

Połączenie ochronników oraz sygnalizacji uszkodzenia pokazano na poniższych schematach:



Ważna książka o fotowoltaice – wydanie VIII

Ważna książka o fotowoltaice – wydanie VIII

Pojawiło się nowe, już VIII wydanie pozycji książkowej traktującej o fotowoltaice. Nie ma takich książek zbyt wiele, więc tym bardziej powinna cieszyć i stanowić obowiązkową lekturę każdego instalatora. Książka zawiera wiele szczegółów technicznych, przeznaczona jest zatem raczej dla firm instalujących lub przymierzających się do instalowania PV.
Do kupienia na stronie wydawcy (GLOBEnergia) za ok. 80 zł.

“Poradnik Instalacje Fotowoltaiczne, edycja VIII”

Bogdan Szymański
ISBN: 978-83-65874-00-9
rok wydania: 2019
format B5, oprawa miękka, s. 330

Książka, której autorem jest niekwestionowany ekspert w zakresie realizacji instalacji fotowoltaicznych, jest skierowana do instalatorów, monterów oraz handlowców związanych z sektorem PV. Lektura tej pozycji da  odpowiedź na pytania o optymalny dobór modułów fotowoltaicznych i falownika oraz o konfigurację instalacji PV tak, aby działała ona poprawnie i wydajnie przez długie lata. Z pełną odpowiedzialnością polecamy tę książkę, dzięki której można uniknąć wielu popełnianych błędów instalacyjnych i uzyskać praktyczne rady pozwalające na wykonanie poprawnie działającej instalacji PV.

Życzymy miłej lektury!
Fronius Polska Sp. z o.o.

SPIS TREŚCI VIII wydania “Instalacje fotowoltaiczne”:

1. Moduły fotowoltaiczne

1.1. Moduł fotowoltaiczny – definicja i budowa
1.2. Podział ogniw i modułów fotowoltaicznych ze względu na materiał półprzewodnikowy
1.2.1. Moduły zbudowane z ogniw z krzemu krystalicznego
1.2.2. Moduły cienkowarstwowe
1.3. Podział modułów PV ze względu na budowę ogniw PV lub modułu PV
1.3.1. Cienkowarstwowe hybrydowe moduły fotowoltaiczne
1.3.2. Moduły monokrystaliczne z obiema elektrodami z tyłu (all back contact)
1.3.3. Moduły monokrystaliczne typu hit
1.3.4. Moduły oparte o ogniwa typu PERC
1.3.5. Moduły PV szyba – szyba
1.3.6. Moduły PV w technologii SMARTwire
1.3.7. Dwustronne moduły PV
1.4. Udział w rynku poszczególnych typów modułów PV
1.5. Zestawienie typów i podstawowych parametrów modułów PV
1.6. Praktyczne znaczenie liczby bus bar-ów
1.7. Stc, noct – warunki w jakich badane są moduły PV
1.8. Charakterystyka prądowo – napięciowa i najważniejsze parametry elektryczne
1.9. Zmiana mocy, napięcia oraz prądu wraz ze zmianą warunków słonecznych
1.10. Zmiana mocy, napięcia oraz prądu wraz ze zmianą temperatury
1.11. Jak poznać moduły wykonane z wysokiej lub niskiej jakości ogniw?
1.11.1. W oparciu o parametry elektryczne
1.11.2. W oparciu o wygląd
1.12. Sprawność modułów PV
1.13. Znaczenie praktyczne sprawności
1.14. Dodatnia tolerancja i jej znaczenie przy wyborze modułu PV
1.15. LID i roczna utrata mocy
1.15.1. Moduły z dodatkiem galu
1.15.2. Początkowy wzrost mocy modułów CIGS
1.16. Degradacja foli EVA
1.17. Sprawność przy niskim natężeniu promieniowania słonecznego
1.18. Certyfikaty i normy
1.19. PVT – połączenie modułu pv z kolektorem słonecznym

2. Falowniki i optymalizatory mocy
2.1. Budowa i podział falowników
2.1.1. Podział falowników ze względu na izolację
2.1.2. Podział falowników ze względu na typ instalacji
2.1.3. Podział falowników ze względu na wielkość
2.2. Mikro-, szeregowy czy centralny – jaki falownik wybrać?
2.3. MPP traker – czym jest i jakie spełnia zadania
2.4. Zależność sprawności falownika od napięcia i obciążenia
2.5. Napięciowy zakres pracy falownika
2.6. Sprawność falowników
2.7. Mikrofalowniki w instalacji
2.7.1. Zalety mikrofalowników
2.7.2. Ograniczenia mikrofalowników
2.7.3. Mikrofalowniki – kiedy pomyśleć o wyborze
2.8. Optymalizatory mocy (power optimizer)
2.8.1. Zasada działania
2.8.2. Stałe napięcie na module PV i na łańcuchu modułów PV
2.8.3. Optymalizacja mocy na poziomie ogniw PV
2.8.4. Monitorowanie pracy na poziomie modułu i funkcje bezpieczeństwa
2.8.5. Porównanie funkcjonalności optymalizatorów mocy
2.9. Porównanie mikrofalowników i optymalizatorów mocy
2.10. Monitoring pracy falowników
2.11. Wymagania OSD względem konfiguracji falowników
2.12. Analiza karty katalogowej

3. Dobór i optymalizacja instalacji PV
3.1. Pochylenie i azymut instalacji fotowoltaicznej
3.2. System nadążny
3.3. Odstępy między rzędami
3.4. Wskaźnik wykorzystania przestrzeni montażowej
3.5. Sposoby łączenia modułów w instalacji
3.5.1. Połączenie szeregowe i równoległe modułów PV
3.5.2. Niedopasowanie prądowe i napięciowe
3.6. Przewody i kable w instalacji pv
3.6.1. Wybór rodzaju kabli oraz ich prowadzenie
3.6.2. Dobór przekroju poprzecznego żył przewodów i kabli w instalacji PV
3.6.3. Tabele doboru przekroju poprzecznego kabli i przewodów do instalacji PV
3.7. Zabezpieczenia w instalacjach PV
3.7.1. Bezpieczniki
3.7.2. Wyłączniki nadprądowe
3.7.3. Wyłącznik różnicowo – prądowy w instalacji PV
3.7.4. Ograniczniki przepięć i instalacja odgromowa
3.7.5. Uziemienie i połączenie wyrównawcze
3.8. Dopasowanie typu modułów do falownika
3.9. Dopasowanie mocy modułów PV do mocy falownika
3.10. Obliczenie minimalnego i maksymalnego napięcia łańcucha modułów PV
3.11. Wyznaczenie maksymalnego prądu zwarcia łańcucha modułów PV
3.12. Obliczenie minimalnej i maksymalnej liczby modułów PV w łańcuchu
3.13. Wybór typu instalacji
3.14. Licznik w instalacji sieciowej on grid i bilansowanie międzyfazowe
3.15. Dobór mocy instalacji sieciowej – on grid
3.16. Przykład doboru instalacji sieciowej
3.16.1. Dobór mocy w oparciu za zużycie energii
3.16.2. Weryfikacja mocy po analizie dostępnej przestrzeni montażowej
3.16.3. Dobór mocy falownika do modułów PV
3.16.4. Dobór łańcuchów modułów pv do falownika
3.16.5. Przewody i zabezpieczenia
3.16.6. Schemat instalacji oraz plan obwodów
3.17. Plan obwodów – string plan
3.18. Uruchomienie falownika w instalacji sieciowej
3.19. Instalacje wyspowe
3.19.1. Bezpośrednie zasilanie urządzeń prądu stałego
3.19.2. Zasilanie urządzeń z wykorzystaniem regulatora ładowania
3.19.3. Zasilanie urządzeń z wykorzystaniem przetwornicy DC/AC oraz regulatora ładowania
3.20. Dobór instalacji wyspowej i hybrydowej do zasilania budynków
3.21. Dokumentacja i testy po wykonaniu instalacji
3.21.1. Kontrola i podstawowe pomiary i testy
3.21.2. Pomiary i analiza charakterystyki prądowo-napięciowej
3.21.3. Badanie kamerą termowizyjną modułów PV
3.21.4. Dokumentacja
3.21.5. Przykładowy protokół z pomiarów i testów instalacji PV
3.22. Współpraca instalacji PV z pompą ciepła
3.23. Co należy przewidzieć na etapie budowy domu pod kątem montażu instalacji PV

4. Akumulatory w systemach pv
4.1. Technologie akumulatorów stosowane we współpracy z systemami pv
4.2. DOD, SOC i liczba cykli ładowania
4.3. Wpływ temperatury na prace akumulatorów
4.4. Współpraca falownika z akumulatorami

5. Konstrukcje wsporcze oraz montaż modułów i falowników
5.1. Systemy mocowań na dachach skośnych
5.2. Systemy mocowań na dachach płaskich
5.3. Rozplanowanie modułów PV i odstępy brzegowe na dachach płaskich oraz skośnych
5.4. Systemy mocowań na gruncie
5.5. Montaż modułów do konstrukcji wsporczej
5.6. Certyfikaty i normy konstrukcji wsporczych
5.7. Montaż falownika

6. Problemy projektowe, wykonawcze i eksploatacyjne
6.1. Zacienienie na instalacjach PV
6.1.1. Rola i znaczenie diod obejściowych
6.1.2. Wpływ zacienienia na pracę modułu PV
6.1.3. Energetyczne skutki zacieniania
6.1.4. Uwzględnianie zacienienia w rozplanowaniu modułów
6.1.5. Unikanie przy montażu stref zacienienia
6.2. Gorący punkt (hot spot)
6.3. Korozja warstwy TCO
6.4. Degradacja indukowanym napięciem PID
6.5. Prąd upływu
6.6. Unikanie pętli indukcyjnej
6.7. Zwarcie doziemne generatora PV
6.8. Moc czynna, bierna, pozorna – cos(φ), tg(φ) falownika
6.9. Wzrost napięcia w miejscu przyłączenia falownika
6.10. Możliwości przyłączenia instalacji do sieci
6.11. Mycie instalacji PV
6.12. Błędy wykonawcze

7. Ekonomika, otoczenie prawne i uzysk energii z instalacji fotowoltaicznych
7.1. Produkcja energii elektrycznej z instalacji fotowoltaicznej
7.1.1. Źródła danych o nasłonecznieniu
7.1.2. Uzysk energii z instalacji PV
7.2. Jak obliczyć uzysk energii z instalacji?
7.3 składowe kosztów instalacji fotowoltaicznej
7.4. Koszty eksploatacyjne
7.5. System rozliczenia energii wyprodukowanej przez instalację PV
7.6. Wymóg umowy kompleksowej dla prosumenta
7.7. Bilansowanie międzyfazowe a ekonomika falowników jednofazowych
7.8. Prosty okres zwrotu mikroinstalacji

8. Wydarzenia branżowe

Zarządzanie produkowaną energią przy użyciu czterech cyfrowych wyjść Datamanager’a

Zarządzanie produkowaną energią przy użyciu czterech cyfrowych wyjść Datamanager’a

WPROWADZENIE

Systemy fotowoltaiczne są zwykle wyposażone w kontrolowane obciążenia w celu zwiększenia stopnia samodzielnego zużycia i autonomii. Wysoka konsumpcja własna oznacza zużywanie jak największej ilości energii produkowanej ze źródła energii odnawialnej, podczas gdy autonomia oznacza czerpanie jak najmniejszej ilości energii z sieci, tzn. bycie tak samowystarczalnym, jak to tylko możliwe.

Aby osiągnąć te cele, należy zainstalować inteligentny licznik energii, Fronius Smart Meter, na styku budynku i sieci OSD. To urządzenie mierzy, ile mocy jest oddawane do sieci lub ile mocy z tej sieci jest pobierane. Jeśli system PV generuje więcej energii, niż jest zużywane w gospodarstwie domowym, daje to nadwyżkę energii PV. Jeśli wymagana jest większa moc niż jest wytwarzana przez system PV, energia elektryczna jest pobierana z sieci.

Firma Fronius oferuje produkty takie jak Fronius Ohmpilot czy Fronius Energy Package, które można dostosować do konkretnego systemu, aby zwiększyć poziom konsumpcji własnej i/lub zapewnić większą autonomię. Rozwiązania te umożliwiają m.in. produkowanie ciepła z nadwyżki energii, na przykład do podgrzewania ciepłej wody i pozwalają na gromadzenie nadwyżki energii uzyskanej w ciągu dnia, dzięki czemu można ją wykorzystać w nocy.

I to nie wszystko: wraz z wydaniem oprogramowania Datamanager w wersji 3.12.1.x i Hybridmanager w wersji 1.10.1.x, odbiorniki energii mogą być teraz kontrolowane za pomocą czterech cyfrowych wyjść w taki sposób, aby wykorzystać energię PV w sposób najbardziej efektywny.

Fronius Datamanager 2.0 (karta rozszerzenia) jest standardowo zintegrowana z falownikami Fronius Galvo, Primo, Symo, Eco i Symo Hybrid i może zostać dołożona do falowników Fronius IG, IG Plus i CL. Urządzenie Datamanager dostępne jest również jako samodzielne urządzenie, w tzw. wersji Box.

OKABLOWANIE

Schemat

Schemat połączeń przedstawiony poniżej jest typowym przykładem aplikacji z zewnętrznym przekaźnikiem i ręcznym przełączaniem, np. do załączenia grzałki w celu podgrzania wody w przypadku jej dodatkowego zużycia. Można również użyć przekaźników ze zintegrowanym przełączaniem Auto-On-Off.


Rysunek 1 – Typowy schemat połączeń

Przykładowe typy przekaźników

Podczas doboru przekaźnika należy zapoznać się ze specyfikacją techniczną (moc cewki, napięcie cewki, napięcie przełączania i prąd przełączania). Przykłady odpowiednich przekaźników pokazano poniżej:

Rysunek 2 – Przekaźnik FINDER – 10 A, 12 VDC + montaż na szynie DIN: seria 62Rysunek 3 – Przekaźnik Weidmüllera 6A -MRS 12 VDC, styk przełączającyRysunek 4 – Przekaźnik Finder serii 19 z ręcznym przełączaniem pomiędzy Auto-On-Off

Datamanager 2.0

Karta Fronius Datamanager 2.0 oferuje kilka dodatkowych funkcji, takich jak interfejs Modbus RTU (RS-485) do inteligentnego licznika (D-, D+, GND). Więcej informacji na temat instalacji i uruchomienia licznika Fronius Smart Meter można znaleźć na stronie www.fronius.pl oraz www.forum-fronius.pl.

Datamanager 2.0 jest instalowany we wszystkich falownikach począwszy od numeru seryjnego 25490000. Starsze falowniki można zmodernizować dokładając do nich tę kartę rozszerzeń.


Rysunek 5 – Datamanager 2.0 – karta rozszerzeń

Całkowita moc przełączania dla wszystkich 4 wyjść cyfrowych przy napięciu DC: 10,8…12,8 V to 3,2 W.

  • 10,8 V: Fronius IG, Fronius IG Plus, Fronius IG Plus V, Fronius CL, Fronius IG 300-500
  • 12.8 V: Fronius Galvo, Fronius Primo, Fronius Symo, Fronius Eco, Fronius Symo Hybrid

PODŁĄCZANIE ZA POMOCĄ INTERFEJSU DATAMANAGERA

1. Wybierz pozycję menu “USTAWIENIA” na wyświetlaczu falownika

2. Wybierz punkt menu “Punkt dostępu Wi-Fi”


Rysunek 6 – Aktywacja dostępu Punkt na wyświetlaczu falownika

3. Podłącz urządzenie końcowe do punktu dostępu Wi-Fi

a. Wyszukaj sieć “FRONIUS_xxx.xxxxx” na urządzeniu końcowym
b. Nawiąż połączenie z tą siecią
c. Wprowadź hasło: 12345678
d. Wprowadź http://datamanager lub 192.168.250.181 (adres IP połączenia WLAN) z przeglądarki na
urządzeniu końcowym. Jeśli korzystasz z sieci LAN, wpisz 169.254.0.180.

Dalsze informacje dotyczące nawiązywania połączenia można znaleźć w instrukcji obsługi falownika Fronius lub karty Fronius Datamanager 2.0, a także na tej stronie: https://www.forum-fronius.pl/podlaczenie-datamanagera-do-internetu/

AKTYWOWANIE WYJŚĆ CYFROWYCH

Odbiornikami można sterować na podstawie nadwyżki energii z instalacji PV lub ilości wytworzonej energii fotowoltaicznej poprzez aktywację czterech wyjść cyfrowych na falowniku. Odbiornikami takimi jak pompy basenowe, fontanny, punkty ładowania pojazdów elektrycznych, systemy klimatyzacji itp. można sterować za pomocą podłączonych przekaźników.

Pierwszym krokiem jest aktywacja wyjść cyfrowych, które będą wykorzystywane do kontroli odbiorników. Można to zrobić za pomocą webowego interfejsu kart Datamanager lub Hybridmanager.


Rysunek 7 – Aktywacja wyjść cyfrowych do zarządzania odbiornikami

KONFIGUROWANIE WYJŚĆ CYFROWYCH

Drugi krok polega na skonfigurowaniu każdego wyjścia indywidualnie.

Sterowanie

Wyjście może być sterowane na podstawie informacji o nadwyżce produkowanej energii w punkcie wprowadzania energii do sieci lub bezpośrednio ilości wyprodukowanej energii PV. Ta pierwsza opcja może być wybrana tylko wtedy, gdy jest podłączony licznik inteligentny Fronius Smart Meter i został on aktywowany w interfejsie Datamanager / Hybridmanager.


Rysunek 8 – Aktywacja inteligentnego licznika Fronius Smart Meter


Rysunek 9 – Konfiguracja systemu z wykorzystaniem Fronius Smart Meter. Sterowanie na podstawie nadwyżki PV.


Rysunek 10 – Konfiguracja systemu bez licznika Fronius Smart Meter. Sterownie na podstawie wartości produkcji PV. Inteligentny licznik Fronius Smart Meter nie jest wymagany.

Progi

Progi muszą zostać zdefiniowane, aby falownik wiedział, na jakim poziomie mocy wyjście ma być aktywowane lub dezaktywowane. Należy zauważyć, że jeżeli wybrano sterowanie “na podstawie nadwyżki mocy”, przy ustawianiu progu aktywacji należy uwzględnić moc podłączonego odbiornika. Należy również określić histerezę, aby zapobiec zbyt częstemu przełączaniu obciążenia, gdy w punkcie wprowadzania energii do sieci pojawią się niewielkie zmiany.

Przykładowo: pompa basenowa o mocy 1000 W może działać z progiem aktywacji 1200 W i progiem dezaktywacji 0 W, dając histerezę o wartości 200 W.

Czas trwania

Wybór minimalnego czasu trwania zapobiega zbyt częstemu przełączaniu w sytuacjach, gdy promieniowanie słoneczne lub wartość nadwyżki energii stale się zmieniają, ponieważ nadmierne przełączanie skraca żywotność sterowanego urządzenia. Określenie minimalnego czasu trwania zapewnia, że gdy odbiornik zostanie aktywowany, pozostanie włączony przez zadany czas, nawet jeśli odpowiedni parametr spadnie poniżej wartości dezaktywacji.

Natomiast maksymalny czas trwania ogranicza czas, w jakim odbiornik jest załączany co dzień. Na przykład, nie ma potrzeby, aby pompa basenowa pracowała dłużej niż osiem godzin dziennie, nawet jeśli wciąż dostępna jest nadwyżka energii pod koniec dnia. Indywidualne czasy pracy dla każdego odbiornika są sumowane w ciągu dnia.

Zadany czas trwania gwarantuje, że odbiornik będzie działał przez co najmniej określony czas przed określoną godziną. Ponownie biorąc przykład pompy basenowej, pompa powinna pracować co najmniej cztery godziny dziennie, aby utrzymać jakość wody. Zalecamy ustawienie punktu, w którym czas docelowy zostanie osiągnięty w pewnym momencie przed zachodem słońca, aby zapewnić wykorzystanie części nadwyżki energii do napędzania pompy. Jeśli czas ustawiony jest na godzinę 18:00, a pompa pracowała tylko w tym dniu przez dwie i pół godziny, wyjście zostanie aktywowane o godzinie 16.30, tj. na półtorej godziny (brakujące) przed godziną 18:00.

Status

Przesuwanie kursora nad stanem powoduje wyświetlenie powodu dla aktualnego statusu.


Rysunek 11 – Konfiguracja wyjść zarządzania obciążeniami

PRIORYTETY

Dla baterii, Fronius Ohmpilot i zarządzania obciążeniem przez wyjścia I/O powinny zostać określone priorytety. Należy zauważyć, że wyjścia I/O zarządzania obciążeniem są priorytetowo traktowane zgodnie z ich progami aktywacji, co oznacza, że najpierw następuje przełączenie wyjścia I/O zarządzania obciążeniem z zadaną najniższą wartością mocy. Jeśli dwa wyjścia I/O zarządzania obciążeniem mają ten sam próg aktywacji, najpierw zostanie przełączony ten znajdujący się wyżej na liście.

PRZYKŁADY ZASTOSOWAŃ

Bateria, Fronius Ohmpilot i pompa basenowa

Pompa basenu podłączona do zarządzania obciążeniem na wyjściu I/O1 za pośrednictwem stycznika musi być aktywowana, zanim w akumulatorze będzie można zgromadzić energię, która ma być używana głównie w nocy. Grzałka ma najniższy priorytet, ponieważ minimalna temperatura wody jest dostarczana z centralnego systemu ogrzewania i jest regulowana przez Fronius Ohmpilot.

Priorytety:

  1. Zarządzanie obciążeniem I/O1 z pompą basenową o mocy 1000 W, maksymalny czas pracy dziennie = 4 godziny
  2. Akumulator
  3. Fronius Ohmpilot z elementem grzejnym 9 kW


Rysunek 12. – Rozdział energii

Fronius Ohmpilot, pompa basenowa, samochód elektryczny

Pompa basenu i ładowarka samochodu elektrycznego są połączone poprzez zarządzanie obciążeniem: I/O1 i I/O2. Zarządzanie obciążeniami I/O ma przydzielony najwyższy priorytet. Niższy próg mocy oznacza, że pompa basenu jest aktywowana przed ładowarką samochodu.

Priorytet:

  1. Zarządzanie obciążeniem I/O1 z pompą basenową o mocy 1000 W, maksymalny czas pracy dziennie = 4 godziny
  2. Zarządzanie obciążeniem I/O2 z ładowarką samochodową z progiem aktywacji 3000 W i progiem dezaktywacji -1000 W
  3. Akumulator
  4. Fronius Ohmpilot z elementem grzejnym 6 kW


Rysunek 13 – Rozdział energii

 

WIĘCEJ INFORMACJI

Odwiedź strony www.fronius.pl oraz www.forum-fronius.pl, aby uzyskać dodatkowe informacje na temat sterowania obciążeniem.

Patrz “Profilowanie energetyczne Fronius” w celu wizualizacji indywidualnych odbiorników w Solar Web.

Fronius Ohmpilot to idealne rozwiązanie do podgrzewania ciepłej wody lub wytwarzania dowolnego ciepła z własnej elektryczności, ponieważ może płynnie zużywać nadwyżkę energii PV aż do 9 kW.

Dla odbiorników, którzy są głównie załączane w nocy, zaleca się Fronius Energy Package, ponieważ nadwyżka energii jest tymczasowo przechowywana w baterii.

Inne białe księgi:

      • “Rozwiązania E-Mobility – Inteligentne ładowanie samochodu elektrycznego w domu za pomocą energii fotowoltaicznej”
      • “Podłączanie pompy ciepła do systemu zarządzania energią Fronius z Datamanager 2.0”

Artykuł do pobrania w wersji PDF:

Uzyski energii dla różnych układów modułów i konfiguracji falowników

Uzyski energii dla różnych układów modułów i konfiguracji falowników

Jednym z bardziej popularnych wpisów na naszym forum, jest ten dotyczący przewymiarowania mocy modułów względem mocy falownika (można przeczytać go tutaj). W tym artykule wyjaśniamy, jak ułożenie modułów i ich dopasowanie do falownika przekłada się na rzeczywiste uzyski energii. 

Do symulacji użyliśmy oprogramowania firmy Valentin-Software: PV*Sol premium 2019 (R6) w wersji testowej. Nota bene zbliżają się Walentynki, więc będzie można zakupić to oprogramowanie z dobrą zniżką 🙂
PV*Sol to potężne narzędzie pozwalające na wykonanie symulacji na bazie statystycznych danych pogodowych: dla każdego dnia wyliczane są charakterystyki prądowo-napięciowe wybranych modułów uwzględniające chwilowe natężenie promieniowania, wpływ temperatury i ewentualnie zacienienia.  Tak uzyskane wartości nakładane są na parametry falownika: zakres napięć i prądów wejściowych, adaptacja układu MPPT i wykresy sprawności. Jeżeli w projekcie podane są długości i przekroje przewodów: uwzględnione są także powodowane przez nie straty. Jak szczegółowe są to dane, można zobaczyć na przykładowej karcie wyników na rys. 1:

Rys. 1. Symulacja uzysków energii w programie PV*Sol premium 2019 (R6)

Moduły PV wybrane do symulacji to NU-RD300 firmy SHARP o mocy nominalnej 300Wp. Możliwe, że są już nowsze i mocniejsze, ale okrągła wartość mocy ułatwiła nam obliczenia.

Warto jeszcze przypomnieć definicję stosunku mocy (SM), która wykorzystywana jest m.in. w programie doboru Fronius Solar.configurator 4.0:

Poniżej prezentujemy wyniki kilkunastu symulacji i zapraszamy do dyskusji (na forum lub w komentarzach poniżej artykułu).

Instalacja skierowana na Południe

Rys. 2. Moduły SHARP NU-RD300 ułożone na połaci południowej. Źródlo: program PV*Sol premium 2019 (R6)

Pierwsze symulacje wykonaliśmy dla modułów ułożonych w kierunku południowym (azymut = 180°) na dachu dwuspadowym o nachyleniu 37°. Układ 20 modułów został połączony w pojedynczy łańcuch, a ten przyłączono do falowników ze zwartymi wejściami MPPT (symbolicznie oznaczone jako MPPT1+2). Łączna moc modułów to 20 • 300Wp = 6.000Wp. Maksymalny uzysk osiągniemy dla falownika Fronius SYMO 6.0-3-M o nominalnej mocy wyjściowej 6.000W (SM = 98%), ale warto zwrócić uwagę, że dla SM w przedziale od 80% do 120% straty uzysku nie przekraczają – w ujęciu rocznym – 0,5%!

Wszyscy, którzy zastanawiają się nad rozbudową planowanej instalacji w przyszłości powinni również zwrócić uwagę na dobór falownika SYMO 8.2-3-M. W tej konfiguracji SM wynosi 72%, ale straty uzysku to tylko 0,6%.  W przyszłości można będzie bezpiecznie dołożyć kolejne 12 modułów o zbliżonej mocy (np. do drugiego MPPT). Łącznie uzyskamy moc 32 • 300Wp = 9.600Wp co w przypadku falownika o mocy 8.,2kW da nam SM =  ~115%.

A co się stanie, jeśli te 6kWp modułów przyłączymy do falownika SYMO 3.0-3-M, czyli uzyskamy SM bliskie 200%? Zgodnie z artykułem “Przewymiarowanie instalacji względem mocy falowników Fronius” taka konfiguracja jest dopuszczalna bez utraty gwarancji ze strony producenta. No cóż: w układzie modułów skierowanych na południe spowoduje to straty uzysku ponad 13%, a zatem przekroczy ewentualny zysk wynikający z zakupu tańszego modelu.

FalownikKonfiguracja modułówMoc falownikaSMProdukcja rocznaStrata względem optymalnegoUzysk kWh/kWp
Fronius SYMO 8.2-3-M20 szt. do MPPT1+28,2 kW72 %6184,67 kWh-0,6%1030,78
Fronius SYMO 7.0-3-M20 szt. do MPPT1+27,0 kW84 %6203,74 kWh-0,3%1030,96
Fronius SYMO 6.0-3-M20 szt. do MPPT1+26,0 kW98 %6220,21 kWhmaks.1036,70
Fronius SYMO 5.0-3-M20 szt. do MPPT1+25,0 kW118 %6187,04 kWh-0,5%1031,17
Fronius SYMO 4.5-3-M20 szt. do MPPT1+24,5 kW131 %6111,31 kWh-1,8%1018,55
Fronius SYMO 3.7-3-M20 szt. do MPPT1+23,7 kW159 %5834,51 kWh-6,2%972,42
Fronius SYMO 3.0-3-M20 szt. do MPPT1+23,0 kW196 %5405,12 kWh-13,1%900,85

Instalacja Wschód-Zachód

Rys. 3. Moduły ułożone w układzie Wschód-Zachód. Źródlo: program PV*Sol premium 2019 (R6)

Identyczną ilość modułów ułożyliśmy w układzie Wschód-Zachód, po 10 z każdej strony, podobnie na dachu dwuspadowym o nachyleniu 37°. 10 modułów z połaci zachodniej zostało połączonych w pojedynczy łańcuch, który przyłączono MPPT1. Podobnie 10 modułów z połaci wschodniej przyłączono do MPPT2. Łączna moc modułów to oczywiście 20 • 300Wp = 6.000Wp. Maksymalny uzysk osiągniemy również dla falownika Fronius SYMO 6.0-3-M, ale co ciekawe: zastosowanie falownika SYMO 5.0-3-M (SM = 118%), a nawet SYMO 4.5-3-M (SM=131%) daje praktycznie identyczne uzyski! Nawet falownik SYMO 3.7-3-M (SM = 159%) daje sobie całkiem nieźle radę: straty uzysku w ujęciu rocznym wynoszą zaledwie 1,0%.

Tutaj należy zwrócić uwagę, że straty wynikające z przewymiarowania bardzo silnie zależą od nachylenia połaci: im jest większe, tym roczny uzysk energii będzie mniejszy. Gdy przy układzie południowym z każdego kWp uzyskamy około 1037 kWh, to w układzie Wschód-Zachód: 866 kWh. Oszczędność w kosztach instalacji można uzyskać dobierając mniejsze falowniki (SM nawet do 160%) – bez znaczących strat uzysku. Prosimy jednak o każdorazowe wyliczenie takich wartości dla indywidualnych parametrów instalacji (moc, nachylenie, orientacja modułów, itd.).

FalownikKonfiguracja modułówMoc falownikaSMProdukcja rocznaStrata względem optymalnegoUzysk kWh/kWp
Fronius SYMO 8.2-3-M10 do MPPT1 + 10 do MPPT28,2 kW72 %5172,13 kWh-0,5%862,02
Fronius SYMO 7.0-3-M10 do MPPT1 + 10 do MPPT27,0 kW84 %5184,24 kWh-0,3%864,04
Fronius SYMO 6.0-3-M10 do MPPT1 + 10 do MPPT26,0 kW98 %5197,68 kWhmaks.866,28
Fronius SYMO 5.0-3-M10 do MPPT1 + 10 do MPPT25,0 kW118 %5195,18 kWh0,0%865,86
Fronius SYMO 4.5-3-M10 do MPPT1 + 10 do MPPT24,5 kW131 %5196,03 kWh0,0%866,00
Fronius SYMO 3.7-3-M10 do MPPT1 + 10 do MPPT23,7 kW159 %5147,44 kWh-1,0%857,91
Fronius SYMO 3.0-3-M10 do MPPT1 + 10 do MPPT23,0 kW196 %5003,66 kWh-3,7%833,94

Instalacja “mieszana”

Rys. 4. Moduły w układzie “mieszanym”: montowane na połaci południowej i wschodniej. Źródlo: program PV*Sol premium 2019 (R6)

Życie nie lubi prostych rozwiązań, dlatego często można spotkać się z układem modułów, z których [większa] część znajduje się na połaci południowej, a pozostałe – np. na połaci wschodniej. Taki wariant przedstawiono na rysunku 4. Dachy dwuspadowe mają nachylenie 37°. Układ 14 modułów z połaci południowej został połączony w pojedynczy łańcuch, a ten przyłączono do wejścia MPPT1. 10 modułów z połaci wschodniej: w pojedynczym łańcuchu do MPPT2. Schematycznie przedstawiono to poniżej, na rys. 5.

Rys. 5. Schemat przyłączenia modułów z połaci południowej i wschodniej do falownika z dwoma MPPT. Źródlo: program PV*Sol premium 2019 (R6)

Łączna moc modułów to (14 + 10) • 300Wp = 7.200Wp. Więcej niż w poprzednich przykładach. Maksymalny uzysk znów osiągniemy dla falownika Fronius SYMO 6.0-3-M o nominalnej mocy wyjściowej 6.000W, ale SM = 118%. Warto zwrócić uwagę, że dla SM w przedziale od 80% do 120% straty uzysku nie przekraczają – w ujęciu rocznym – 0,5%!

FalownikKonfiguracja modułówMoc falownikaSMProdukcja rocznaStrata względem optymalnegoUzysk kWh/kWp
Fronius SYMO 8.2-3-M14 południe do MPPT1
10 wschód do MPPT2
8,2 kW86 %6695,13 kWh-0,3%928,88
Fronius SYMO 7.0-3-M14 południe do MPPT1
10 wschód do MPPT2
7,0 kW101 %6708,10 kWh-0,1%931,68
Fronius SYMO 6.0-3-M14 południe do MPPT1
10 wschód do MPPT2
6,0 kW118 %6714,22 kWhmaks.932,53
Fronius SYMO 5.0-3-M14 południe do MPPT1
10 wschód do MPPT2
5,0 kW141 %6615,28 kWh-1,5%918,84

Również i ten inwestor zastanawia się nad rozbudową inwestycji w niedalekiej przyszłości (tu mała dygresja: nie należy odkładać rozbudowy, ponieważ producenci praktycznie co rok wprowadzają nowe, wyższe moce i może być kłopot ze znalezieniem “naszych” modułów). Do każdego z łańcuchów chciałby dodać po cztery moduły uzyskując łącznie: ((14 +4) + (10+4)) • 300Wp = (18+ 14) • 300Wp = 9.600Wp. Na jaki falownik powinien się zatem zdecydować? Sprawdźmy dwie konfiguracje:

FalownikKonfiguracja modułówMoc falownikaSMProdukcja rocznaStrata względem optymalnegoUzysk kWh/kWp
Fronius SYMO 8.2-3-M18 południe do MPPT1
14 wschód do MPPT2
7,0 kW115 %9021,80 kWhmaks.939,77
Fronius SYMO 7.0-3-M18 południe do MPPT1
14 wschód do MPPT2
6,0 kW134 %8957,24 Wh-0,7%933,05

Wybór właściwego modelu nasuwa się sam…

Dach płaski

Rys. 6. Moduły w instalacji przemysłowej na dachu płaskim. Źródło: program PV*Sol premium 2019 (R6)

W przypadku instalacji przemysłowych, często są one lokalizowane na płaskim dachu budynku. Ze względu na łatwość montażu najczęściej stosuje się systemy balastowe, o niewielkim kącie nachylenia (10-15°).

Na rysunku 6. przedstawiliśmy przykładową instalację składającą się z 50 sztuk modułów o mocy 300Wp każdy. Orientacja modułów: południowa, nachylenie 10°. Układ: 2 x 14 modułów do MPPT1 oraz 22 moduły do MPPT2.

Łączna moc modułów to 50 • 300Wp = 15.000Wp. Więcej niż w poprzednich przykładach. Maksymalny uzysk znów osiągniemy dla falownika Fronius SYMO 15.0-3-M o nominalnej mocy wyjściowej 15.000W, ale dla falownika Fronius SYMO 12.5-3-M, czyli SM = 118%, straty uzysku są praktycznie zerowe!

FalownikKonfiguracja modułówMoc falownikaSMProdukcja rocznaStrata względem optymalnegoUzysk kWh/kWp
Fronius SYMO 17.5-3-M2 x 14 do MPPT1
22 do MPPT2
17,5 kW84 %14502,63 kWh-0,2%966,84
Fronius SYMO 15.0-3-M2 x 14 do MPPT1
22 do MPPT2
15,0 kW98 %14532,67 kWhmaks.968,84
Fronius SYMO 12.5-3-M2 x 14 do MPPT1
22 do MPPT2
12,5 kW118 %14527,29 kWh-0,0%968,49
Fronius SYMO 10.0-3-M2 x 14 do MPPT1
22 do MPPT2
10,0 kW147 %14175,66 kWh-2,5%945,04
Fronius SYMO 8.2-3-M2 x 14 do MPPT1
22 do MPPT2
8,2 kW179 %13522,74 kWh-6,9%901,52

Postanowiliśmy również sprawdzić – dla identycznego ułożenia modułów – nieco większą instalację. Konfigurację łańcuchów dopasowaliśmy do falownika Fronius ECO 27.0-3-S: każdy z łańcuchów ma po 23 moduły, czyli uzyskamy łącznie: 23 • 5 • 300Wp = 115 • 300Wp = 34.500Wp. Porównując uzyski wyrażone w kWh/kWp okazuje się, że strata względem konfiguracji optymalnej jest praktycznie pomijalna:

FalownikKonfiguracja modułówMoc falownikaSMProdukcja rocznaStrata względem optymalnegoUzysk kWh/kWp
Fronius ECO 27.0-3-S5 x 23 do MPPT127,0 kW125 %33403,46 kWh-0,1%968,22

Podsumowanie

Jak widać, dzięki możliwości znacznego, ale bezpiecznego przewymiarowania falowników Fronius, zarówno projektanci, jak i instalatorzy dostają dużą swobodę w doborze prawidłowej konfiguracji. W połączeniu z SuperFlex Design uzyskujemy elastyczność, która stanowi jedno ze źródeł sukcesu produktów Fronius na całym Świecie.

Prawidłowe przewymiarowanie (Stosunek Mocy, SM) zależy od wielu czynników: lokalizacji, kąta nachylenia modułów, azymutu. Dlatego dla każdego indywidualnego przypadku należy dobrać optymalną wartość SM, która powinna być wynikiem obliczeń / symulacji. Przyjmuje się, że straty wynikające z przewymiarowania (SM > 100%) lub niedowymiarowania (SM < 100%) nie powinny przekraczać 1%, a najlepiej: 0,5%. Zależność wielkości strat od wartości SM jest nieliniowa. Dla opisanych w tym artykule wariantów wygląda jak na wykresie poniżej. Dla różnych konfiguracji ustawienia modułów uzyskamy różne graniczne wartości SM.

WAŻNE: wyniki powyższych symulacji są jedynie przykładem, w jaki sposób należy dobierać wielkość falownika do przyjętego układu modułów. Każdorazowo projektant i/lub wykonawca instalacji powinien określić poprawny dobór falownika opierając się na rzeczywistych danych, takich jak: lokalizacja, orientacja i nachylenie modułów, ich typ oraz ewentualny wpływ zacienienia. Gorąco zachęcamy do własnych eksperymentów i wykorzystania w swoich projektach programów takich jak PV*Sol czy BlueSol.

Napięcie rozpoczęcia pracy falownika (Udc start)

Napięcie rozpoczęcia pracy falownika (Udc start)

Poniższy artykuł wyjaśnia, jak należy traktować parametr nazwany jako “napięcie rozpoczęcia pracy falownika”, a oznaczany jako UDC start. Prawdopodobnie to nazwa tego parametru prowadzi do mylnej interpretacji, że jest to wartość napięcia, przy której falownik rano rozpoczyna pracę. Wyjaśniamy, jak jest naprawdę.

Jak działa ogniwo fotowoltaiczne

Najpierw przypomnijmy sobie, jak działa ogniwo fotowoltaiczne oraz jak wyglądają zależności napięcia i prądu od wartości natężenia promieniowania słonecznego. Bardzo dobrze przedstawia to poniższy wykres:

Kiedy zależność prądu jest praktycznie liniowa, to w przypadku napięcia już małe wartości natężenia promieniowania świetlnego powodują, że na zaciskach modułów pojawiają się znaczące wartości. Ten fakt wyjaśnia m.in. zaskakujące zjawisko, w którym łańcuch modułów fotowoltaicznych oświetlony uliczną lampą daje napięcie o wartości kilkudziesięciu woltów. Oczywiście łańcuch taki nie będzie dawał mocy, ponieważ zbyt mały jest prąd (o czym więcej będzie poniżej).

Efekt ten widać również na charakterystykach prądowo-napięciowych modułów PV. Poniżej wycinek z karty jednego z wiodących producentów:

Podczas gdy prąd oraz moc bardzo silnie zależy od wartości promieniowania, o tyle wartość napięcia układu otwartego (UOC), czy też napięcia w punkcie mocy maksymalnej (Umpp) praktycznie zmienia się w zakresie zaledwie kilku procent.

Napięcie na modułach fotowoltaicznych pojawia się już przy kilkunastu/kilkudziesięciu W/m2.  Gdy falownik po raz pierwszy włącza się rano, każdy moduł fotowoltaiczny działa już z napięciem około 30 woltów i prądem 0,1 ampera. Gdy słońce wzejdzie, prąd zwiększy się do 2 amperów, a następnie do 3 amperów i osiągnie maksimum około dziewięciu amperów w pełnym słońcu. Napięcie pozostaje jednak prawie takie samo: około 30 woltów (Umpp).

Parametry wejściowe falownika

Spójrzmy na kartę techniczną dla falowników trójfazowej rodziny SYMO o mocach od 3.0 do 4.5kW:

Napięcie rozpoczęcia pracy (UDC start) to 200V, ale zakres napięcia wejściowego UDC min zaczyna się od 150V. Jak należy rozumieć te wartości? Napięcie na łańcuchu modułów musi przekroczyć 200V, aby falownik mógł rozpocząć pracę. W praktyce, we wczesnych godzinach porannych, gdy moduły są jeszcze schłodzone po nocy taką wartość UOC osiąga się na kilkadziesiąt minut przed wschodem Słońca. Gdy układ MPP (poszukiwania punktu mocy maksymalnej) zaczyna pracę, napięcie na łańcuchu modułów zmniejsza się i ważne jest, aby nie spadło poniżej minimalnej dopuszczalnej wartości (czyli 150V). Oczywiście należy uwzględnić przy tym wpływ temperatury – a jak wiadomo moduły nagrzewają się najbardziej w godzinach okołopołudniowych.

Napięcie rozpoczęcia pracy oraz minimalna wartość napięcia wejściowego wykorzystuje się do wyliczenia minimalnej “długości” łańcucha modułów, tj. ilości modułów, przy której falownik podejmie pracę i będzie również działał w miesiącach letnich, przy dużych wzrostach temperatury ogniw.

Policzmy, jak to działa.

W karcie technicznej jednego z lepszych modułów dostępnych na rynku możemy odczytać wartość napięcia w punkcie MPP, oraz współczynniki temperaturowe:

Z powyższych możemy odczytać:

Umpp @ STC = 31,1V
Wsp. temp VOC = -0,32%/°C

Moduły fotowoltaiczne, a konkretnie ogniwa, w upalne dni mogą nagrzać się nawet 30-35°C powyżej temperatury otoczenia. Dużo oczywiście zależy od chłodzenia takich modułów. Te zainstalowane na dachu będą nagrzewały się bardziej, niż te wolnostojące. Przyjmijmy dla prostego rachunku, że temperatura ogniw może osiągnąć 75°C, czyli +50°C powyżej temperatury STC.

Spadek napięcia wynikający z tak wysokiej temperatury wyniesie:

-0,32%/°C ⋅ (75°C – 25°C) = -0,32%/°C ⋅ 50°C = -15,96%

Czyli napięcie w punkcie mocy maksymalnej będzie miało wartość:

Umpp = 31,1V – 15,96% = 26,14V

A zatem, aby osiągnąć minimalne napięcie wejściowe falownika:

UDC min / Umpp = 150V / 26,14V = 5,74

Zatem minimalna ilość modułów w pojedynczym łańcuchu dla zapewnienia poprawnej pracy falownika wynosi 6 sztuk (> 5,74).

Niestety, czasami spotykamy się z błędem, polegającym na niewłaściwym wyliczeniu minimalnej ilości modułów w łańcuchach. To poważny błąd projektowy, zwłaszcza, że jest dostępne bezpłatne narzędzie: Solar.Configurator, które znacznie ułatwia to zadanie. W efekcie instalacja zamontowana zimą lub wczesną wiosną działa w miarę poprawnie, po czym w miesiącach letnich systematycznie wyłącza się w cieplejsze dni.

Czym to się objawia? Jeśli projektant lub instalator wybierze dla powyższej kombinacji tylko 5 modułów w jednym łańcuchu, przy STC (25°C temp. ogniw; 1000W/m²) otrzymamy:

Umpp łańcucha @ 25°C = 31,1V x 5 sztuk = 155,5V czyli więcej niż 150V

W chłodniejsze dni falownik będzie zatem pracował. Ale w upalne dni:

Umpp łańcucha @ 75°C = 26,14V x 5 sztuk = 130,7V czyli mniej niż 150V

Przy takiej wartości napięcia wejściowego falownik się wyłączy.

Wszystkim, którzy chcą się zapoznać z narzędziem Solar.Configurator polecamy Webinarium #07 :: Solar.configurator 4.0

Kiedy falownik “startuje”, czyli zaczyna wprowadzać energię do sieci?

No dobrze, czas rozprawić się z jednym z bardziej popularnych mitów na portalach społecznościowych: “im niższe napięcie startu falownika, tym falownik wcześniej rozpoczyna pracę“. Użytkownicy portalu Solar.Web w zakładce ANALIZA mają dostęp do wszystkich wykresów najważniejszych parametrów zarówno po stronie DC, jak i AC (tym, którzy nie posiadają monitorowanej instalacji polecamy przycisk “ZOBACZ DEMO” na głównej stronie portalu). Spójrzmy na wykresy napięcia, prądu i mocy po stronie DC, które można uzyskać zaznaczając w zakładce URZĄDZENIA wybrany falownik, a następnie odpowiednie KANAŁY: napięcie i prąd DC oraz moc łączną.
Dla lepszej czytelności zrobiliśmy powiększenie fragmentu obejmujące godziny przedpołudniowe:

Oto zdarzenia, które mają miejsce we wczesnych godzinach porannych:

czaszdarzenie
03:30punkt (A): napięcie UOC (układu otwartego) przekracza 150V
03:40punkt (B): napięcie UOC przekracza 200V, czyli napięcie rozpoczęcia pracy falownika SYMO 3.7-3-M
04:20zgodnie z kalendarzem: astronomiczny Wschód Słońca w dniu 21/06/2018 w okolicy Włocławka (tam jest zlokalizowana nasza instalacja)
04:25pionowa linia niebieska: falownik rozpoczyna pracę, czyli wprowadzanie energii do sieci. Widać jak urządzenie MPP przesuwa napięcie z UOC do Umpp.

 

Do rozpoczęcia pracy falownika potrzebna jest moc, a moc to:

Nawet jeśli na modułach pojawi się wystarczająca wartość napięcia, ale natężenie promieniowania będzie nadal zbyt niskie, aby moduły wytworzyły prąd, falownik *nie* będzie wprowadzał energii do sieci. Moc przy wysokim napięciu, ale prądzie równym 0A, nadal wynosi 0W. Widać to wyraźnie na wykresie powyżej: napięcie na modułach pojawia się z pierwszym brzaskiem – na długo przed wschodem Słońca. Ale dopiero gdy natężenie promieniowania jest wystarczająco duże, aby pojawił się prąd – a co za tym idzie: moc, falownik rozpoczyna wprowadzanie energii do sieci.

WNIOSEK

Wartość napięcia rozpoczęcia pracy nie ma żadnego wpływu na wcześniejsze rozpoczęcie pracy (tj. wprowadzania energii do sieci) przez falownik.