fbpx

Tag: ochrona przeciwpożarowa

Uzgadnianie projektów instalacji PV z rzeczoznawcą ds. zabezpieczeń przeciwpożarowych

Uzgadnianie projektów instalacji PV z rzeczoznawcą ds. zabezpieczeń przeciwpożarowych

Ostatnia aktualizacja: 10.09.2020

W świetle ostatnich zmian w przepisach prawa budowlanego nakazujących do urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej większej niż 6,5 kW wprowadzających obowiązek uzgodnienia z rzeczoznawcą do spraw zabezpieczeń przeciwpożarowych projektu tych urządzeń oraz zawiadomienia organów Państwowej Straży Pożarnej, wśród inwestorów i instalatorów pojawiło się sporo wątpliwości i pytań. Dlatego zapraszamy do lektury niniejszego artykułu, który odpowiada na większość z nich.

Zapraszamy do obejrzenia webinarium pt. “Bezpieczeństwo instalacji PV“.


Instalacje fotowoltaiczne są bezpieczne!

Najważniejszym wnioskiem różnych badań prowadzonych w Europie jest to, że przy prawidłowej instalacji systemy PV są super bezpieczne. Dlatego tak ważne jest stosowanie norm, standardów i przepisów, które zawierają wytyczne dotyczące poprawnego projektu i instalacji W tym artykule podsumowujemy najważniejsze zasady i kryteria wyboru elementów systemu oraz zalecenia dotyczące instalacji w kontekście uzgadniania projektów instalacji PV z rzeczoznawcą ds. zabezpieczeń przeciwpożarowych. Zwracamy również uwagę, że projekt systemu, w którym występuje jak najmniejsza liczba (profesjonalnie zainstalowanych, kompatybilnych) połączeń wtykowych prądu stałego oraz wysokiej jakości falownik ze zintegrowanymi zabezpieczeniami sprawia, że bezpieczna technologia fotowoltaiczna jest jeszcze bezpieczniejsza.

Przez kilka dziesięcioleci fotowoltaika sprawdziła się jako zrównoważona, elastyczna i skuteczna technologia wytwarzania energii. Zgodnie z danymi opublikowanymi przez BRE National Solar Centre, niezależny instytut badawczy z Wielkiej Brytanii w publikacji  „Fire and Solar PV Systems – Investigations and Evidence in July 2017” –  prawidłowo zaprojektowana oraz eksploatowana instalacja nie stwarza zwiększonego ryzyka powstania pożaru w budynku. Badanie BRE wykryło mniej niż 60 incydentów pożarowych na rynku około 1 miliona systemów zainstalowanych w ciągu ostatnich siedmiu lat – z czego 42 stwierdzono jako spowodowane przez system fotowoltaiczny, a tylko 17 z nich oznaczono jako „poważne pożary”, które rozprzestrzeniły się poza źródło. Podobne wnioski płyną również z innych raportów opublikowanych m.in. przez TÜV Rheinland we współpracy z Instytutem Systemów Energetyki Słonecznej im. Fraunhofera gdzie wskazuje się, że pożary wywołane przez system PV stanową zaledwie 0,016% w odniesieniu do wszystkich instalacji fotowoltaicznych powstałych w Niemczech.

Zmiany w ustawie prawo budowlane

Zgodnie z Ustawą z dnia 13 lutego 2020 r. o zmianie ustawy – Prawo budowlane oraz niektórych innych ustaw (Dz. U. 2020 poz. 471) od 19.09.2020 nowe brzmienie otrzymuje Art. 29 prawa budowlanego, a wraz z nim:

„4. Nie wymaga decyzji o pozwoleniu na budowę oraz zgłoszenia […] wykonywanie robót budowlanych polegających na:

3) instalowaniu:

c) pomp ciepła, wolno stojących kolektorów słonecznych, urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej nie większej niż 50 kW z zastrzeżeniem, że do urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej większej niż 6,5 kW[1] stosuje się obowiązek uzgodnienia z rzeczoznawcą do spraw zabezpieczeń przeciwpożarowych pod względem zgodności z wymaganiami ochrony przeciwpożarowej, zwany dalej „uzgodnieniem pod względem ochrony przeciwpożarowej”, projektu tych urządzeń oraz zawiadomienia organów Państwowej Straży Pożarnej, o którym mowa w art. 56 ust. 1a”

A zatem po 19.09.2020 konieczne będzie potwierdzenie przez rzeczoznawcę w formie uzgodnienia, że spełnione są wymagania ochrony przeciwpożarowej nowoprojektowanej instalacji fotowoltaicznej, gdy łączna moc modułów będzie większa niż 6,5kWp. Innymi słowy, projekt techniczny takiej instalacji będzie wymagał obowiązkowego uzgodnienia pod względem zgodności z wymaganiami ochrony przeciwpożarowej z uwagi na Art. 29 ust. 2. 6kt. 16. (Dz. U. 2020 poz. 1333).

Na chwilę obecną przepisy nie wskazują jakie wymagania należy spełnić w kontekście projektowanej instalacji fotowoltaicznej. Należy zatem przyjąć, że zakres opracowania powinien obejmować istotne elementy wskazane w § 4 ust. 1 rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 2 grudnia 2015r. w sprawie uzgadniania projektu budowlanego pod względem ochrony przeciwpożarowej  (Dz. U. z 2015r., poz. 2117). Zakres ten będzie oczywiście zależny m.in. od kategorii zagrożenia ludzi przedmiotowego budynku.

Budynki oraz części budynków z uwagi na przeznaczenie i sposób użytkowania, dzieli się na:

  • mieszkalne, zamieszkania zbiorowego i użyteczności publicznej charakteryzowane kategorią zagrożenia ludzi, określane dalej jako ZL I, ZL II, ZL III, ZL IV, ZL V;
  • produkcyjne i magazynowe, określane dalej jako PM;
  • inwentarskie (służące do hodowli inwentarza), określane dalej jako IN.

[1] Moc zainstalowana instalacji fotowoltaicznej interpretowana jest jako moc pola modułów, dlatego należy to rozumieć jako „6,5kWp”.

Budynki mieszkalne jednorodzinne

Budynki na dachach których najczęściej projektowana jest instalacja fotowoltaiczna, to budynki mieszkalne jednorodzinne. Budynki takie klasyfikuje się jako ZL IV, jednak z punktu widzenia projektowego są specyficzną grupą obiektów, które przy projektowaniu najczęściej nie wymagają uzgodnienia z rzeczoznawcą ds. zabezpieczeń przeciwpożarowych [2]. Mają też znacznie mniejsze wymagania w zakresie ochrony przeciwpożarowej np. dla budynków niskich (N) nie określa się chociażby klasy odporności pożarowej oraz innych istotnych parametrów jak odporność ogniowa ścian wewnętrznych, konstrukcji dachu czy przekrycia dachu. Pozornie mogłoby się wydawać, że zaprojektowanie w takim obiekcie instalacji fotowoltaicznej nie będzie ograniczone żadnymi dodatkowymi wymaganiami, ale nie do końca jest to prawda. W Polsce nie występują przepisy szczegółowe dotyczące projektowania instalacji PV z uwagi na przepisy przeciwpożarowe. Nie mniej jednak Prawo Budowlane w art. 5 nakazuje projektowania obiektu budowlanego oraz urządzeń z nim związanych w taki sposób, żeby zapewnić odpowiednie bezpieczeństwo pożarowe. Bezsprzecznie instalacja PV jest takim urządzeniem i nie może być ignorowana w procesie projektowym. Ten sam artykuł tj. Art. 5 ust. 1 określa, że instalacja (urządzenia) może być projektowana na zasadach wiedzy technicznej. Wiedzą techniczną są normy i publikacje, ale także wykorzystanie polskich przepisów, które nie są przeznaczone bezpośrednio dla instalacji PV. Dotyczy to chociażby rozporządzenia MSWiA ws. uzgadniania projektu budowlanego pod względem ochrony przeciwpożarowej. Rozporządzenie to określa wytyczne dla projektów budowlanych, nie projektów technicznych (o których mowa w przypadku instalacji ≤ 50kWp), jednak zapisy te mogą być wykorzystane – poprzez pewne analogie – w projektach budowlanych instalacji fotowoltaicznych.

W zakresie opracowania to projektant powinien określić, czy projektowana przez niego instalacja ma wpływ na następujące parametry:

  • przewidywaną gęstość obciążenia ogniowego,
  • ocenę zagrożenia wybuchem pomieszczeń oraz przestrzeni zewnętrznych,
  • informację o stopniu rozprzestrzeniania ognia elementów budowlanych,
  • podział obiektu na strefy pożarowe
  • informacje o usytuowaniu z uwagi na bezpieczeństwo pożarowe, w tym o odległości od obiektów sąsiadujących,
  • informacje o warunkach i strategii ewakuacji ludzi lub ich ratowania w inny sposób.

oraz dodatkowo informacje o sposobie zabezpieczenia przeciwpożarowego instalacji PV, a także rozwiązania zmniejszające ryzyko powstania pożaru. Aby spełnić te wymogi należy skorzystać z następujących zasad wiedzy technicznej:

  • połączenia DC zaprojektować za pomocą szybkozłączek (np. złączy MC4) wyłącznie tego samego typu i producenta,
  • zminimalizować w instalacji ilość połączeń DC,
  • trasy przewodów DC prowadzić w metalowych kanałach kablowych (eliminując wszelkie ostre krawędzie), a tam gdzie to konieczne w obudowie zapewniającej EI 30, EI 60 lub EI 120,
  • trasy przewodów odpowiednio oznakować: „Niebezpieczeństwo – wysokie napięcie DC w ciągu dnia obecne po wyłączeniu instalacji”,
  • przepusty instalacyjne przez ściany oddzielenia przeciwpożarowego należy zabezpieczyć w tej samej klasie odporności ogniowej co przegroda,
  • zapewnić ochronę odgromową urządzeń fotowoltaicznych (jeżeli na budynku istnieje instalacja odgromowa).

Wyposażenie w gaśnice

Najszybciej do akcji gaśniczej mogą przystąpić mieszkańcy danego budynku. Dlatego – choć nie ma tu wymogów formalno-prawnych – należy zapewnić wyposażenie instalacji PV w gaśnicę proszkową 4 kg ABC (GP-4x) zlokalizowaną w pobliżu falownika PV, zwłaszcza, że koszt takiej gaśnicy jest niewielki. Grupa gaśnic, którymi wolno gasić urządzenia pod napięciem posiada napis na polu etykiety informujący „Do gaszenia urządzeń pod napięciem elektrycznym do 1000V” i są to wszystkie gaśnice proszkowe i śniegowe, przy czym wymagane jest zachowanie minimalnej odległości 1m od gaszonego urządzenia). Od niedawna można również zastosować gaśnice mgłowe GWM-3x lub GWM-6x – bezpieczne przy gaszeniu urządzeń elektronicznych pod napięciem i bardzo skuteczne. Nie uszkadzają przy tym układów elektronicznych – nie należy mylić z uszkodzeniem spowodowanym temperaturą od ognia – niemniej – są około 4 razy droższe od gaśnic proszkowych.

Gaśnica proszkowa GP-4x

Oznakowanie budynku

Ponadto w celu zapewnienia odpowiedniego bezpieczeństwa dla ekip ratowniczo gaśniczych należy odpowiednio oznakować obiekt wyposażony w PV (zgodnie z normą PN-EN 60364-7-712).
Naklejka z wizerunkiem modułów PV na dachu budynku powinna być umieszczona:

  • w miejscu przyłączenia instalacji PV,
  • w rozdzielni głównej budynku,
  • przy liczniku oraz
  • przy głównym wyłączniku zasilania.

Rys. 1. Oznakowanie obiektu wyposażonego w PV zgodnie z normą PN-EN 60364-7-712

Przygotowanie obiektu budowlanego i terenu do prowadzenia działań ratowniczo-gaśniczych

Z uwagi na zapewnienie bezpieczeństwa ekip ratowniczych podczas działań, należy wykonać oznaczenia następujących składowych instalacji fotowoltaicznej oraz wykonania planu urządzenia fotowoltaicznego. Część graficzna powinna zawierać:

  • obszar lokalizacji modułów PV,
  • lokalizację falownika/ów PV,
  • miejsca usytuowania elementu (np. rozłącznika) zapewniającego odłączenie napięcia po stronie DC falownika (nawet jeśli stanowi wyposażenie falownika PV),
  • przebieg tras oprzewodowania prądu stałego pozostających pod napięciem,
  • ewentualnych ognioodpornych obudów lub osłon projektowanych na tym oprzewodowaniu,
  • opcjonalnie przebiegu tras oprzewodowania prądu przemiennego,
  • legendę zastosowanych oznaczeń graficznych i literowych,
  • wskazanie osób lub podmiotów opracowujących plan oraz datę jego opracowania.

Przykładową kartę informacyjną obiektu, wzorowaną na niemieckiej normie VDE-AR-2100-7200 przedstawiono na rysunku 2.

Karta zgłoszenia do organów Państwowej Straży Pożarnej
Rys. 2. Proponowana karta informacyjna stanowiąca załącznik projektu instalacji PV
(na wzór niemieckiej normy VDE-AR-2100-712)

Należy podkreślić, że dla budynków o kubaturze do 1000 m3 nie ma wymogu i konieczności stosowania przeciwpożarowego wyłącznika prądu, ani konieczności wyłączania zasilania po stronie DC. Również standardy i normy europejskie, w tym stawiana za wzór niemiecka norma VDE-AR-2100-712 nie narzuca takiego wymogu. Ważne jest oznakowanie instalacji, które informuje stosowne służby ratownicze o zagrożeniu. Ponadto, akcje gaśniczo-ratunkowe zawsze prowadzone są z zachowaniem zasady ograniczonego zaufania, tj. w taki sposób, jakby wszystkie obwody były pod napięciem – bez względu na zastosowane rozwiązania techniczne, czy markę producenta falownika.


[2] Dla budynków mieszkalnych ZL IV od grupy wysokości „średniowysokie” wymagane jest obligatoryjne uzgodnienie.

Budynki z przeciwpożarowym wyłącznikiem prądu (PWP)

Natomiast w przypadku budynków, dla których wymagany jest Przeciwpożarowy Wyłącznik Prądu (np. te, które mają strefy pożarowe o kubaturze większej niż 1000m3) dodatkowo należy zapewnić:

Pozostałe budynki, na dachu których projektowane są instalacje fotowoltaiczne, to budynki zaliczone do kategorii PM, IN oraz do kategorii zagrożenia ludzi:

  • ZL I – np. restauracje, kina, sale balowe, duże sklepy zazwyczaj wielkopowiezrzchniowe,
  • ZL II – szpitale, budynki opieki zdrowotnej, żłobki, szpitale jednego dnia, DPSy,
  • ZL III – budynki użyteczności publicznej np. urzędy, sklepy, banki, biurowce,
  • ZL IV – budynki mieszkalne wielorodzinne tzw. bloki mieszkalne, apartamentowce,
  • ZL V – hotele, akademiki, bursy itp.

Do takiego projektu należy zawsze podejść w sposób indywidualny, uwzględniający aktualne rozwiązania ochrony przeciwpożarowej zastosowane w danym obiekcie. Niemniej w projekcie powinny się znaleźć wszystkie elementy dotyczące budynków mieszkaniowych indywidualnych, oraz dodatkowo:

  • informacje o możliwym wpływie instalacji PV na urządzenia przeciwpożarowe i inne urządzenia służące bezpieczeństwu pożarowemu, dostosowanemu do wymagań wynikających z przepisów dotyczących ochrony przeciwpożarowej i przyjętych scenariuszy pożarowych, z podstawową charakterystyką tych urządzeń,
  • lokalizacje elementów instalacji fotowoltaicznej względem urządzeń oddymiających,
  • w przypadku występowania w budynku Systemu Sygnalizacji Pożarowej, należy dokonać aktualizacji scenariusza pożarowego przez rzeczoznawcę ds. zabezpieczeń przeciwpożarowych,
  • Instrukcję Bezpieczeństwa Pożarowego należy zaktualizować o dział związany z bezpieczeństwem pożarowym instalacji fotowoltaicznej oraz sposobem postępowania w przypadku wystąpienia pożaru takiej instalacji.
  • należy zrealizować odłączenie zasilania przeciwpożarowym wyłącznikiem prądu (PWP).

W przypadku tego ostatniego wymagania warto przytoczyć Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U.2019 poz. 1065):

§ 183 Warunki techniczne dotyczące instalacji elektrycznych
[…]
2. Przeciwpożarowy wyłącznik prądu, odcinający dopływ prądu do wszystkich obwodów, z wyjątkiem obwodów zasilających instalacje i urządzenia, których funkcjonowanie jest niezbędne podczas pożaru, należy stosować w strefach pożarowych o kubaturze przekraczającej 1000 m3 lub zawierających strefy zagrożone wybuchem.

Jeśli zatem w budynku występują strefy pożarowe o kubaturze powyżej 1000 m3 lub przeciwpożarowy wyłącznik prądu, instalacja PV musi zostać zaprojektowana w sposób umożliwiający odłączenie od zasilania w energię elektryczną przewodów prowadzonych przez budynek.

Opcja 1 – zewnętrzny rozłącznik DC

W związku z tym zastosowano następujące rozwiązanie polegające na zastosowaniu rozłącznika DC na dachu budynku przy jednoczesnym spełnieniu przez ten rozłącznik następujących wymagań:

  • rozłącznik DC musi być atestowany i certyfikowany do działania w warunkach pożaru,
  • musi izolować wszystkie przewody pod napięciem,
  • rozłącznik DC musi być przystosowany do prądu stałego,
  • rozłącznik DC musi posiadać wyraźnie zaznaczone pozycje WŁ. i WYŁ,
  • musi być zgodny z normą PN-EN 60947-3:2009 – „Aparatura rozdzielcza i sterownicza niskonapięciowa — Część 3: Rozłączniki, odłączniki, rozłączniki izolacyjne i zestawy łączników z bezpiecznikami topikowymi”,
  • obudowy rozłączników powinny być również oznaczone napisem „Niebezpieczeństwo – zawiera części pod napięciem w ciągu dnia”. Wszystkie etykiety muszą być wyraźne, dobrze widoczne, zbudowane i przymocowane do końca oraz czytelne.
Rys. 3. Wariant z zewnętrznym rozłącznikiem DC

Warto zaznaczyć, że urządzenia typu MLPS (obniżanie napięcia na poziomie modułu) bardzo często nie spełniają wymogów rozłączników stosowanych w ochronie przeciwpożarowej i nie mogą być jedynym sposobem zabezpieczania instalacji fotowoltaicznej przed wprowadzeniem napięcia do strefy pożarowej o kubaturze powyżej 1000 m3. Dodatkowo, dla przeciwpożarowych wyłączników prądu elementy składowe, takie jak: urządzenia uruchamiające, urządzenia sygnalizujące, urządzenia wykonawcze od dnia 01.01.2021 roku jako wyroby budowlane zostaną objęte obowiązkiem sporządzania przez producentów krajowej deklaracji właściwości użytkowych (znak budowlany „B”).

Opcja 2 – montaż falownika na zewnątrz strefy pożarowej

W związku z tym zastosowano następujące rozwiązanie polegające na montażu falowników poza strefą pożarową, względem której dokonano instalacji modułów PV. Dodatkowo należy zapewnić:

  • prowadzenie przewodów DC w sposób podobny do tych, które muszą pozostać pod napięciem w przypadku pożaru: kable odporne na działanie wysokiej temperatury i wody, obudowanie kabli ogniochronnym kanałem kablowym lub poprowadzenie ich trasami wydzielonymi pożarowo w klasie EI 60 lub EI 120,
  • umieszczenie informacja o instalacji PV przy przeciwpożarowym wyłączniku prądu,
  • uzupełnienie „Instrukcji Bezpieczeństwa Pożarowego” o sekcję dotyczącą instalacji PV wraz z częścią graficzną.
Rys. 4. Wariant z umiejscowieniem falownika (oraz obwodów DC) poza strefą pożarową o kubaturze > 1000 m3

Optymalizatory mocy – niebezpieczny środek bezpieczeństwa

Oczywiste jest, że złącza DC są potrzebne do połączenia modułów fotowoltaicznych, a także do podłączenia powstałych ciągów do falownika, ale każde dodatkowe połączenie na dachu zwiększa prawdopodobieństwo wystąpienia pożaru. Dlatego przy projektowaniu systemu fotowoltaicznego minimalizacja liczby punktów kontaktowych na dachu powinna być ważnym założeniem w celu zwiększenia bezpieczeństwa systemów fotowoltaicznych.

Jak zauważyli TÜV Rheinland i Fraunhofer ISE (Sepanski i in. 2015, s. 204): „Każdy dodatkowy element stwarza ryzyko dodatkowych punktów kontaktowych i innych źródeł błędów. „Elegancki” system z jak najmniejszą liczbą komponentów ma tę zaletę, że ma mniej punktów, w których może dojść do uszkodzenia systemu”.

Niezintegrowane układy elektroenergetyczne, takie jak klasyczne optymalizatory mocy prądu stałego, stosowane w celu wyłączania napięcia na poziomie modułu, wymagają zastosowania dodatkowych złączy prądu stałego na każdym module. Oznacza to, że liczba punktów połączenia na dachu zostanie znacznie zwiększona. W celach ilustracyjnych rysunek 5 pokazuje układ PV o mocy 6 kW z falownikiem szeregowym, a rysunek 6: z optymalizatorami prądu stałego. Jak pokazano, dodatkowe urządzenia zainstalowane na modułach fotowoltaicznych w obwodzie prądu stałego prawie trzykrotnie zwiększają liczbę punktów styku na dachu: 61 złączy z optymalizatorami, w porównaniu do 21 złączy dla falownika łańcuchowego.

Dlatego znacznie bardziej prawdopodobne jest wystąpienie błędów instalacji i niedopasowania złączy prądu stałego, co z kolei zwiększa ryzyko pożaru. Ta ostatnia jest dalej zwiększana, ponieważ niektórzy producenci optymalizatorów dostarczają swoim produktom bardzo niewiele opcji różnych producentów złącz DC (ECN TNO 2019), co stwarza większe ryzyko niedopasowania (niekompatybilności) złączy DC podczas instalacji.

Rys. 5. Konfiguracja systemu o mocy 6 kW z falownikiem łańcuchowym.
Rys. 6. Konfiguracji systemu o mocy 6 kW z dodatkowymi optymalizatorami.

Akty prawne i normy stanowiące podstawę opracowania

Przy opracowaniu projektu należy korzystać z następujących norm, ustaw i rozporządzeń:

  • Ustawa z dnia 24 sierpnia 1991 roku o ochronie przeciwpożarowej (Dz. U. z 2020 r., poz. 961 tekst jednolity).
  • Rozporządzenie Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. z 2019 r. poz. 1065 tekst jednolity).
  • Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 2 grudnia 2015 roku w sprawie uzgadniania projektu budowlanego pod względem ochrony przeciwpożarowej (Dz. U. z 2015r., poz. 2117).
  • Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 roku w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (Dz. U. z 2010 r. nr 109, poz. 719) wraz ze zmianami (Dz.U. 2019 poz. 67)
  • Ustawa Prawo Budowlane z dnia 7 lipca 1994 r.  (Dz. U. 2020 poz. 1333 tekst jednolity)
  • PN-HD 60364-7-712:2016 Instalacje elektryczne niskiego napięcia – Część 7 –712: Wymagania dotyczące specjalnych instalacji lub lokalizacji – Fotowoltaiczne (PV) układy zasilania;
  • PN-EN IEC 61730-1:2018-06 Ocena bezpieczeństwa modułu fotowoltaicznego (PV) – Część 1: Wymagania dotyczące konstrukcji;
  • PN-EN IEC 61730-2:2018-06 Ocena bezpieczeństwa modułu fotowoltaicznego (PV) – Część 2: Wymagania dotyczące badań.
  • PN-EN 62446-1:2016-08 oraz PN-EN 62446-1:2016-08/A1:2019-01 Systemy fotowoltaiczne (PV) – Wymagania dotyczące badań, dokumentacji i utrzymania – Część 1: Systemy podłączone do sieci – Dokumentacja, odbiory i nadzór;

A co z zawiadomieniem organów Państwowej Straży Pożarnej?

Nie ma wytycznych lub rozporządzeń, które regulowałyby ten wymóg narzucony w/w Ustawą. Na chwilę obecną wydaje się być zasadnym przekazanie zwięzłej informacji o dokonaniu montażu instalacji PV na budynku pod wskazanym adresem.

Bezpieczeństwo z firmą Fronius

Firma Fronius przykłada bardzo dużą wagę do bezpieczeństwa instalacji PV. Podejmujemy szereg działań w tym zakresie, które są naturalną konsekwencją 25-letniego doświadczenia firmy w branży fotowoltaicznej.

  • Podstawą bezpiecznej instalacji jest jej poprawne zaprojektowanie i wykonanie. Dlatego stale szkolimy naszych instalatorów i wyposażamy ich w najbardziej aktualną wiedzę.
  • Zgodność ze standardami to podstawa, ale zwykle przekraczamy ich wymagania, stawiając na najwyższą jakość w projektowaniu i produkcji falowników.
  • Dobry monitoring jest aniołem stróżem systemu fotowoltaicznego. Oferujemy falowniki wyposażone w wiele funkcji ciągłego monitorowania stanu instalacji.
  • Klasyczne falowniki wymagają minimalnej ilości połączeń po stronie DC, co zmniejsza ryzyko powstania pożaru.

Więcej materiałów na temat bezpieczeństwa pożarowego instalacji fotowoltaicznych.

Dodatek: fragment Ustawy prawo budowlane

Nowa wersja (obowiązująca od 19-09-2020)

Montażu pomp ciepła, wolno stojących kolektorów słonecznych, urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej nie większej niż 50 kW z zastrzeżeniem, że do urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej większej niż 6,5 kW stosuje się obowiązek uzgodnienia z rzeczoznawcą do spraw zabezpieczeń przeciwpożarowych pod względem zgodności z wymaganiami ochrony przeciwpożarowej, zwany dalej „uzgodnieniem pod względem ochrony przeciwpożarowej”, projektu tych urządzeń oraz zawiadomienia organów Państwowej Straży Pożarnej, o którym mowa w art. 56 ust. 1a,

Stara wersja (obowiązująca do 18-09-2020)

montażu pomp ciepła, wolnostojących kolektorów słonecznych, urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej nie większej niż 50 kW oraz mikroinstalacji biogazu rolniczego w rozumieniu art. 19 ust. 1 ustawy z dnia 20 lutego 2015 r. o odnawialnych źródłach energii (Dz. U. z 2018 r. poz. 2389, z późn. zm.3) ) z zastrzeżeniem, że do urządzeń fotowoltaicznych o mocy zainstalowanej elektrycznej większej niż 6,5 kW oraz mikroinstalacji biogazu rolniczego, stosuje się obowiązek uzgodnienia pod względem zgodności z wymaganiami ochrony przeciwpożarowej projektu budowlanego, o którym mowa w art. 6b ustawy z dnia 24 sierpnia 1991 r. o ochronie przeciwpożarowej (Dz. U. z 2019 r. poz. 1372 i 1518), oraz zawiadomienia organów Państwowej Straży Pożarnej, o którym mowa w art. 56 ust. 1a tej ustawy;

Webinarium

WEBINARIUM “BEZPIECZEŃSTWO INSTALACJI PV”

Zapraszamy do obejrzenia webinarium.

Pliki do pobrania

Karta informacyjna stanowiąca załącznik projektu instalacji PV (edytowalna)

Karta informacyjna stanowiąca załącznik projektu instalacji PV (edytowalna)

Proponujemy – na wzór zgłoszenia z niemieckiej normy VDE-AR-2100-712 – plan oraz przekrój budynku, który zawierałby m.in.:

  • lokalizacje modułów PV,
  • lokalizacje falownika/ów,
  • drogę prowadzenia przewodów DC pozostających pod napięciem,
  • rozłącznik DC

Karta informacyjna powinna stanowić załącznik do projektu instalacji PV. Powinna również zostać umieszczona w pobliżu miejsca instalacji falownika PV.

Karta informacyjna stanowiąca załącznik projektu instalacji PV

Karta informacyjna stanowiąca załącznik projektu instalacji PV

Proponujemy – na wzór zgłoszenia z niemieckiej normy VDE-AR-2100-712 – plan oraz przekrój budynku, który zawierałby m.in.:

  • lokalizacje modułów PV,
  • lokalizacje falownika/ów,
  • drogę prowadzenia przewodów DC pozostających pod napięciem,
  • rozłącznik DC

Karta informacyjna powinna stanowić załącznik do projektu instalacji PV. Powinna również zostać umieszczona w pobliżu miejsca instalacji falownika PV.

Fotowoltaiczny Dekalog Dobrych Praktyk

Fotowoltaiczny Dekalog Dobrych Praktyk

Ochrona przeciwpożarowa instalacji fotowoltaicznych jest jednym z głównych poruszanych tematów w branży PV w ostatnich miesiącach. Stowarzyszenie Branży Fotowoltaicznej POLSKA PV wraz z firmami członkowskimi – między innymi z firmą Fronius Polska – przygotowało poradnik zawierający 10 najważniejszych zasad w zakresie projektowania, montażu i serwisowania instalacji PV wpływających na poprawę bezpieczeństwa pożarowego instalacji. 

Mimo iż instalacje fotowoltaiczne same w sobie są bezpieczne wymagają odpowiedniego projektu i montażu aby to bezpieczeństwo zachować.  

Poniżej udostępniamy link do wersji elektronicznej poradnika. Zapraszamy do lektury.

Fotowoltaiczny dekalog dobrych praktyk – SBF Polska PV

Fotowoltaiczny dekalog dobrych praktyk – SBF Polska PV

Ochrona przeciwpożarowa instalacji fotowoltaicznych jest jednym z głównych poruszanych tematów w branży PV w ostatnich miesiącach. Stowarzyszenie Branży Fotowoltaicznej POLSKA PV wraz z firmami członkowskimi przygotowało poradnik zawierający 10 najważniejszych zasad w zakresie projektowania, montażu i serwisowania instalacji PV wpływających na poprawę bezpieczeństwa pożarowego instalacji.

Mimo iż instalacje fotowoltaiczne same w sobie są bezpieczne wymagają odpowiedniego projektu i montażu aby to bezpieczeństwo zachować.

Poniżej udostępniamy link do wersji elektronicznej poradnika. Zapraszamy do lektury.

Biała księga :: Ograniczenie ryzyka wystąpienia pożaru w instalacjach PV

Biała księga :: Ograniczenie ryzyka wystąpienia pożaru w instalacjach PV

W instalacjach elektrycznych, a więc także w systemach fotowoltaicznych, bezpieczeństwo ma ogromne znaczenie. Systemy PV, które są projektowane, instalowane i eksploatowane zgodnie z ogólnie przyjętymi zasadami technicznymi są bezpieczne i niezawodne, nawet w najbardziej niesprzyjających warunkach pogodowych. Jednak mogą zaistnieć scenariusze zdarzeń, które wymagają dodatkowych urządzeń zabezpieczających. Na przykład w systemach, które nie są regularnie monitorowane i w których moduły są instalowane na łatwopalnym dachu lub izolacji.

Ograniczenie ryzyka wystąpienia pożaru w instalacjach PV

Ograniczenie ryzyka wystąpienia pożaru w instalacjach PV

Niniejszy materiał bazuje na dokumencie opracowanym przez Niemieckie Stowarzyszenie Przemysłu Solarnego (Bundesverband Solarwirtschaft e.V.) – BSW-Solar. Bardzo dziękujemy za zgodę na wykorzystanie materiałów i publikację tych niezwykle ciekawych wytycznych na polskim rynku.

Fronius Polska Sp. z o.o.

WPROWADZENIE

W instalacjach elektrycznych, a więc także w systemach fotowoltaicznych, bezpieczeństwo ma ogromne znaczenie. Systemy PV, które są projektowane, instalowane i eksploatowane zgodnie z ogólnie przyjętymi zasadami technicznymi są bezpieczne i niezawodne, nawet w najbardziej niesprzyjających warunkach pogodowych. Jednak mogą zaistnieć scenariusze zdarzeń, które wymagają dodatkowych urządzeń zabezpieczających. Na przykład w systemach, które nie są regularnie monitorowane i w których moduły są instalowane na łatwopalnym dachu lub izolacji.
Ten dokument ma za zadanie przedstawić wytyczne dla projektantów, instalatorów, inspektorów i rzeczoznawców do spraw zabezpieczeń p.poż.

POWSTAWANIE ŁUKU ELEKTRYCZNEGO

Łuk elektryczny może zdarzyć się tylko wtedy, gdy wystąpią poważne usterki w istotnych dla bezpieczeństwa systemu PV elementach i nie zostaną one zawczasu wykryte. Przyczyną może być np. uszkodzenie podwójnej izolacji przewodu DC w kilku miejscach lub zwiększona oporność na styku uszkodzonego złącza.

Zasadniczo rozróżnia się łuki równoległe i szeregowe. Łuki szeregowe nie są łatwe do zidentyfikowania. Jednak najlepiej można zapobiec ich powstawaniu lub co najmniej zminimalizować je, jeśli zastosuje się do wytycznych niniejszego dokumentu. W przypadku tak zwanych łuków równoległych już zapewnienie monitorowania stanu izolacji DC przez falownik zapewnia znaczną ochronę, ponieważ poprzez wyeliminowanie pierwszych symptomów błędów izolacji, w większości przypadków można zapobiec powstaniu łuku równoległego. Oznacza to jednak, że operator systemu fotowoltaicznego musi być szczególnie uczulony, aby analizować komunikaty o błędach pochodzące z falownika i poinformować o tym fakcie specjalistyczną firmę.

Przykładowo, dla falowników firmy Fronius błędy związane ze zbyt niską wartością stanu izolacji sygnalizowane są kodem #475.

Ilosc polaczen w instalacji PV

Rys. 1. Potencjalne miejsca wystąpienia łuków szeregowych w instalacjach PV.

ZASADY PROWADZENIA PRZEWODÓW

Środki zapobiegające powstawaniu łuków elektrycznych i rozprzestrzeniania się uszkodzeń są łatwe do wdrożenia w fazie projektowania oraz w fazie instalacji. Poniższe zalecenia oparte są na możliwych do zaobserwowania głównych przyczynach powstawania łuków elektrycznych w systemach fotowoltaicznych. Biorąc pod uwagę te zalecenia, ryzyko wyładowania łukowego jest w dużej mierze wykluczone, a jego skutki są ograniczone.

A. Typ kabli i przewodów

Należy stosować wyłącznie kable solarne odpowiednie do zastosowań zewnętrznych i trudnych warunków pogodowych oraz odporne na promieniowanie UV. W Europie obecnie stosowane są indywidualne specyfikacje dla poszczególnych krajów. Normy nie są identyczne, a przy wyborze kabli solarnych należy również wziąć pod uwagę ich ogniotrwałość.

B. Wykorzystanie kanałów kablowych

Kanały kablowe oferują niezawodną ochronę przed obciążeniami mechanicznymi kabli i przed ich uszkodzeniem mechanicznym. Należy pamiętać, że na końcach kanałów kablowych lub siatek kablowych, a także na odgięciach i rozgałęzieniach nie może być ostrych krawędzi. Mogą one prowadzić do uszkodzenia izolacji kabli. Metalowe kanały kablowe mogą również łagodzić skutki wyładowań łukowych, ponieważ nie są one wykonywane z materiału łatwopalnego.

     
Ryc. 2: Koryto z zadziorami.
Uwaga – niebezpieczeństwo uszkodzenia izolacji!
Ryc. 3: Gratowanie kanałów kablowych, tak aby izolacja przewodów pozostała nienaruszona przez dłuższy czas Ryc. 4: Należy stosować ochronę krawędzi lub dodatkowo zabezpieczoną instalację w plastikowych rurach w obszarze krawędzi i ugięć przewodów
Ryc. 5: Kratka kablowa z wolnymi końcami prętów i ostrymi krawędziami.
Uwaga – niebezpieczeństwo uszkodzenia izolacji!
Ryc. 6: Należy usunąć końcówki prętów lub użyć ochraniaczy krawędzi Ryc. 7: Zalecana jest prowadnica kabla zintegrowana w konstrukcji wsporczej

Podczas układania przewodów należy zapewnić, aby nie były one stale zanurzone w wodzie. W przeciwnym razie izolacja może zostać uszkodzona. Warunek ten musi być zapewniony podczas instalowania kabli.

Elastyczne kable muszą być prowadzone ze wsparciem mechanicznym i zabezpieczone przed wpływami środowiskowymi po zainstalowaniu na stałe (PN EN 50565-1). Wymogi te dotyczą również kabli fotowoltaicznych zgodnie z normą PN EN 50618.

C. Promienie gięcia

Promień gięcia określony przez producenta musi być przestrzegany. W przeciwnym razie izolacja może być nadmiernie naprężona, co prowadzi do powstawania pęknięć, szczególnie w niskich temperaturach.

W przypadku elastycznych przewodów do instalacji fotowoltaicznych z reguły promień gięcia nie powinien być mniejszy niż 4 x D.

   
Ryc. 8: Nie można oprowadzać do pękania izolacji Ryc. 9: Promień gięcia a średnica kabla

Podczas montażu kabli do skrzynek przyłączowych falowników, skrzynek przyłączeniowych modułów, wtyczek i rozdzielaczy, należy również zapewnić odpowiednie promienie gięcia. W szczególności w przypadku modułów montowanych poprzecznie, należy z góry rozważyć wystarczającą długość kabli. Zawsze należy przestrzegać dopuszczalnych promieni zginania.

   
 

Ryc. 10: Skrzynka połączeniowa modułu Ryc. 11: W przypadku modułów montowanych poprzecznie należy zwrócić uwagę na odpowiednie długości kabli, aby zachować zgodność z promieniem gięcia i uniknąć dodatkowych obciążeń rozciągających na modułowym gnieździe połączeniowym.

Przy zmianie kierunku wiązek kabli należy wziąć pod uwagę różne długości kabli.


Ryc. 12. Zmiana kierunku prowadzenia przewodów

Jeśli promień gięcia nie może być dotrzymany przez zbyt krótkie przewody łączące, jest to uważane za poważną wadę instalacji.

D. Bezpieczny montaż przewodów

Mocowanie kabli służy przede wszystkim do przenoszenia obciążeń. Chroni to kable i zintegrowane zabezpieczenia (np. złącza) przed odkształceniami i przed przeciążeniem mechanicznym. Nasadka powinna zapobiegać otarciom linii lub ścieraniu izolacji. Nie wolno uszkadzać izolacji przewodów urządzeniami mocującymi. Wymagania te mogą zwykle spełniać tylko odpowiednie urządzenia / wsporniki. Opaski kablowe nadają się zatem tylko do mocowania kabli, a nie do przenoszenia obciążenia. Można stosować wyłącznie opaski kablowe zatwierdzone do użytku na zewnątrz (w szczególności odporność na promieniowanie UV).

Odstępy mocowania muszą być przestrzegane zgodnie z instrukcjami producenta lub ustaleniami z producentem przewodów. Jeśli nie są one dostępne, przyjmuje się, że odległość montażowa przewodów PV w poziomie powinna być nie mniejsza niż 250 mm, a w pionie: nie mniejsza niż 400 mm.

Podstawowe wymaganie: przewody muszą być luźno ułożone, nie mogą być układane pod obciążeniem mechanicznym, muszą być odciążone i w wystarczającym stopniu uwolnione od naprężeń. W trakcie funkcjonowania instalacji nie mogą być nigdy poddawane mechanicznemu naprężeniu. Należy unikać kontaktu z ostrymi krawędziami lub porysowaniem na szorstkim podłożu.

Kable należy mocować w odstępach zgodnych z instrukcjami producenta.

E. Odciążenie

Odciążenie chroni połączenia liniowe przed przeciążeniem mechanicznym. W poszczególnych elementach (wtyczka, skrzynka przyłączeniowa modułu, itp.) są one często zintegrowane i dlatego mogą one absorbować jedynie ograniczone siły. Na przykład w przypadku wtyków PV o średnicach przewodów 4-9 mm zintegrowany w standardzie reduktor naprężeń może wytrzymać 80N (IEC / EN 62852). Ewentualnie występujące obciążenia muszą zostać pochłonięte przez sposób układania.


Ryc. 13: Złącza DC i skrzynki połączeniowe modułów z dławikami PG – zintegrowane przepusty absorbują siły tylko w ograniczonym zakresie.

F. Odpowiednie zaprojektowanie i ustawienie złączy

Układając złącza, należy upewnić się, że są one prawidłowo zainstalowane (patrz także Rozdział 4 – Zalecenia dotyczące odpowiednich komponentów). Wtyczki muszą być zaślepione zgodnie ze specyfikacją producenta i nie mogą być montowane pod naprężeniem mechanicznym (przestrzegać odciążenia, patrz ryc. 13).


Ryc. 14: Złącze DC

Wtyki PV są zwykle chronione przed wnikaniem wody. Należy unikać trwałego zanurzenia wtyczek w wodzie. Ciągłe narażenie na wodę może negatywnie wpływać na poprawność działanie złączy.

Należy unikać umiejscawiania złączy w zasięgu bezpośredniego działania światła słonecznego.

O ile to możliwe, podczas projektowania instalacji należy wziąć pod uwagę dostępność złączy dla późniejszych przeglądów i serwisu: w trakcie funkcjonowania instalacji należy zapobiegać ewentualnemu zanieczyszczeniu i powstawaniu mchu na złączach lub należy je regularnie usuwać. Wtyczki muszą być zainstalowane zgodnie ze specyfikacją producenta.

G. Ograniczenie możliwości rozprzestrzeniania się ognia

Łuk elektryczny może zapalić łatwopalne membrany dachowe i leżącą pod nimi izolację w przypadku bezpośredniego kontaktu. Na etapie planowania należy zatem sprawdzić, czy można zastosować niepalne membrany dachowe lub izolację. Jeśli nie jest to możliwe, wpływ ewentualnego wystąpienia łuku należy zminimalizować w sposób trwały i wystarczający – należy zapewnić odległości między przewodem i poszyciem dachu (kanały kablowe lub wystarczająco gruba baza mineralna, taka jak żwir).

Wybierając materiały instalacyjne, należy wziąć pod uwagę, że tworzywa sztuczne mają wyższy potencjał zapłonu i rozprzestrzeniania się ognia niż materiały metalowe.

H. Ochrona przewodów na dachu

Wejścia kablowe do budynku muszą być wykonane profesjonalnie. Nie należy prowadzić kabli po ostrych krawędziach i nie należy przytwierdzać ich bezpośrednio do dachu. Odnośnie wpływu grawitacji na przewody decydujące są specyfikacje producenta kabla. Należy przestrzegać zalecane maksymalne odległości poziomych i pionowych mocowań kabli. Opaski kablowe są niedozwolone w przypadku działania grawitacji na przewody.

Zasadniczo powierzchnia wszystkich pętli przewodów musi być utrzymywana na jak najniższym poziomie w celu zmniejszenia indukowanych napięć spowodowanych uderzeniami piorunów (Ryc. 15). Bezpośrednio przed wprowadzeniem do budynku zaleca się, aby przewody DC-plus i DC-minus były poprowadzone osobno w odległości 5 do 10 centymetrów od budynku.


Ryc 15. Przy układaniu przewodów należy minimalizować powierzchnię pętli.

Kontynuowaniu możliwego równoległego łuku przez wpusty dachowe można zapobiec poprzez osobne zamontowanie przewodów DC-plus i DC-minus bezpośrednio przed wprowadzeniem do budynku. Generalnie zaleca się stosowanie bariery ogniowej do wprowadzania kabli do budynku. W ten sposób zapobiega się przekazywaniu ognia przez tak zwany efekt bezpiecznika.

I. Bezpiecznie szafki rozdzielcze i rozdzielnice

Skrzynki przyłączowe modułów PV muszą spełniać wymagania normy PN-EN 61439-2 (i jej załączników).

Należy zapewnić prawidłowe podłączenie kabli oraz rozdzielenie strony dodatniej i ujemnej w skrzynkach przyłączeniowych generatora i innych skrzynkach zaciskowych. Zwiększona rezystancja styku z powodu niewłaściwego połączenia może doprowadzić do przegrzania punktu końcowego, a to z kolei: do ryzyka pożaru z powodu łuków szeregowych.

Nawet przy rozłącznikach należy przestrzegać specyfikacji producenta. Niektórzy producenci zalecają używanie rozłączników DC minimum raz każdego roku. W wyniku tego działania powstające osady tlenkowe są ścierane, a rezystancja kontaktu jest znacznie zmniejszona.

ZALECENIA DOTYCZĄCE ODPOWIEDNICH MATERIAŁÓW

A. Przewody

Najwłaściwsze jest zastosowanie jednożyłowych kabli PV z oznaczeniem PV1-F, a następnie H1Z2Z2-K (PN-EN 50618). Posiadają izolację, która pozwala na ich stosowanie w urządzeniach i systemach klasy II. Ponadto mają wysoką odporność na wpływy środowiska, takie jak promieniowanie UV i wysoką wytrzymałość mechaniczną. Jeśli inne przewody są używane jako linie główne lub stałe, muszą być uziemione i zabezpieczone przed zwarciem. Należy je chronić przed warunkami atmosferycznymi i promieniowaniem UV, np. w zamkniętych kanałach kablowych.

B. Złącza MC4

Należy stosować wyłącznie złącza zgodne z PN-EN 62852. Odpowiedniki (męskie / żeńskie) muszą być tego samego typu i producenta.

C. Kanały i korytka kablowe (systemy prowadzenia przewodów)

Kanały i korytka kablowe muszą być zatwierdzone przez producenta do użytku na zewnątrz. W przypadku kanałów kablowych producent powinien zapewnić odpowiednią ochronę krawędzi. Preferowane są metalowe kanały kablowe i rury instalacyjne, pod warunkiem, że są one odporne na korozję. Gdy stosowane są kanały z tworzywa sztucznego, muszą być odporne na warunki atmosferyczne, a zwłaszcza na promieniowanie UV i ozon.

D. Tuleje

W celu wprowadzenia kabla do kanały kablowego należy zastosować tuleje (np. zgodnie z DIN 18195 część 9).

E. Mocowania

Złącza kablowe nie są odpowiednie do mocowania kabli. Mogą być używane tylko do łączenia kabli. Do zamocowania należy zastosować odpowiednie zaciski kablowe, klipsy itp.

F. Falowniki

Falowniki powinny być bezwzględnie instalowane zgodnie z wytycznymi producenta. Ze względu na zakres tego tematu, zostanie mu poświęcone osobne opracowanie.

G. Uziemienie, ochrona odgromowa i przeciwprzepięciowa

Właściwe uziemienie instalacji fotowoltaicznej wraz z ewentualną ochroną przed skutkami wyładowań atmosferycznych mają ogromne znaczenie dla uniknięcia jakichkolwiek usterek elektrycznych, które mogłyby doprowadzić do powstania pożaru. Gorąco zachęcamy do zapoznania się z obszerną literaturą udostępnianą przez wiodących producentów tych rozwiązań, takich jak Jean-Mueller (CITEL) lub DEHN.

H. Uwaga ogólna

W przypadku obiektów rolniczych może być również konieczna odporność na działanie amoniaku.

OZNAKOWANIE

Dla bezpieczeństwa osób, zaleca się, aby budynek w którym znajduje się instalacja fotowoltaiczna posiadał oznakowanie zgodne z normą: PN-HD 60364-7-712:2016 w następujących miejscach:

  • w rozdzielni głównej budynku
  • obok głównego licznika energii (jeśli oddalony od rozdzielni głównej)
  • obok głównego wyłącznika
  • w rozdzielnicy, w której przyłączona jest instalacja fotowoltaiczna do instalacji elektrycznej budynku


Ryc. 16. Etykieta wskazująca na obecność instalacji elektrycznej w budynku

Każdy z punktów z dostępem do elementów pod napięciem po stronie DC, takie jak rozdzielnice i skrzynki DC, powinny mieć trwałe oznaczenie wskazujące, że części znajdujące się pod napięciem mogą być nadal zasilane po rozłączeniu izolacyjnym.

Przykładowy tekst: „NAPIĘCIE DC INSTALACJI PV – UWAGA! Obwody mogą pozostać pod napięciem po rozłączeniu izolacyjnym strony DC!”.

Na falownikach należy umieścić ostrzeżenie, że wszelkie prace serwisowe można prowadzić dopiero po odłączeniu separującym falownika zarówno od strony DC, jak i AC. Uwaga: falowniki mają zgromadzoną energię w kondensatorach, której rozładowanie do wartości bezpiecznych może zająć nawet kilka minut.

REKOMENDACJE DOTYCZĄCE UŻYTKOWANIA

Aby zapewnić długoterminową wydajność i bezpieczeństwo pracy systemu PV, należy go poddawać regularnej inspekcji i konserwacji. Poniższy przegląd zawiera zalecenia dotyczące zawartości i częstotliwości konserwacji.

Kiedy Gdzie Co Kto Uwagi
Codziennie Falownik Kontrola wyświetlacza roboczego w celu uniknięcia utraty wydajności przy wyłączeniach awaryjnych Operator Alternatywnie: monitorowanie z aktywnym raportowaniem o błędzie do operatora
  Monitoring danych operacyjnych (system) Kontrola stanu pracy za pomocą zdalnego monitorowania (w przypadku ochrony przeciwpożarowej należy zwrócić szczególną uwagę na błędy izolacji). Operator / serwis  
    Analizy komunikatów o błędach i odpowiednie działania serwisowe Serwis  
Miesięcznie Licznik energii Monitorowanie wydajności: regularna rejestracja i analiza odczytów liczników 

(nie dotyczy automatycznego gromadzenia i oceny danych operacyjnych).

Operator / serwis  
  Powierzchnia modułów Kontrola wzrokowa, czy występują poważne, oczywiste wady, takie jak przesunięte moduły, luźne: zaciski modułów, elementy ram montażowych lub kable solarne Operator Przemieszczanie się w okolicy pola modułów tylko po zatwierdzonych trasach!
Regularnie, najrzadziej co cztery lata Cała instalacja Powtórzenie pomiarów i testów przy uruchamianiu zgodnie z PN-EN 62446-1 Serwis  
Sytuacyjne – po automatycznym wyłączeniu falownika Cała instalacja Rozwiązywanie problemów Serwis  

*) W niniejszym dokumencie określenie „kable“ i „przewody“ stosowane jest zamiennie, choć skłaniamy się do definicji, wg której o ile każdy kabel jest przewodem, to nie każdy przewód jest kablem. W „Aparatach i urządzeniach elektrycznych” Witolda Kotlarskiego czytamy: „przewody mające izolację z materiałów stałych budowane są na niższe napięcia – maksymalnie do 6kV, a kable praktycznie na cały zakres stosowanych napięć.”

ŹRÓDŁO

Niniejszy artykuł bazuje na oryginalnym dokumencie „Merkblatt für Planer und Installateure. Lichtbogenrisiken an PV-Anlagen reduzieren” przygotowanym przez:

  • Bundesverband Solarwirtschaft e.V. – BSW-Solar (Niemieckie Stowarzyszenie Przemysłu Solarnego e.V. – BSW-Solar)
  • Deutsche Gesellschaft für Sonnenernergie e.V. – DGS (Niemieckie Towarzystwo Energii Słonecznej e.V. – DGS)
  • Fraunhofer-Institut für Solare Energie Systeme ISE (Fraunhofer Institute for Solar Energy Systems ISE)
  • GDV TÜV Rheinland – www.tuv.com
  • Gesamtverband der Deutschen Versicherungswirtschaft e.V. – GDV (Ogólne Stowarzyszenie Niemieckich Ubezpieczycieli e.V. – GDV)
  • Zentralverband der Deutschen Elektro- und Informationstechnischen Handwerke – ZVEH (Centralne Stowarzyszenie Niemieckiego Inżynierii Elektrycznej i Informatyki – ZVEH)

Pierwsza edycja: lipiec 2017 r

Wydawca niemieckiej edycji: Bundesverband Solarwirtschaft e.V.

Tłumaczenie na język polski: dr inż. Maciej Piliński, Fronius Polska Sp. z o.o.

ZASTRZEŻENIE

Zawarte w dokumencie informacje zostały pozyskane przez komitet ekspertów z BSW-Solar na podstawie wcześniejszych badań przyczyn powstawania i skutków działania ognia dla systemów fotowoltaicznych w projekcie www.pv-brandsicherheit.de TÜV Rheinland, Fraunhofer ISE i DGS Berlin Brandenburg we wrześniu 2015. Zalecenia, adaptacja i tłumaczenie były tworzone z najwyższą starannością. Wydawca oryginalnego dokumentu nie ponosi jednak żadnej odpowiedzialności za prawidłowość i przydatność informacji w indywidualnych przypadkach, ani za dokładność i rzetelność tłumaczenia na język polski. Niezbędna jest zatem wnikliwa analiza okoliczności i lokalnych przepisów, które należy zachować w przypadku konkretnej realizacji.


Artykuł do pobrania w wersji PDF – “Biała księga”